Late Breaking Results: Float Fight - Verifying
Floating-Point Behavior in RISC-V Simulators

Katharina Ruep

Manfred Schlédgl

Daniel Grofle

Institute for Complex Systems, Johannes Kepler University Linz, Austria

katharina.ruep @jku.at

Abstract—In this paper, we enhance RVVTS, an open-source
framework for testing RISC-V vector instructions, to enable
comprehensive floating-point (FP) verification across various
RISC-V simulators and FP libraries. Our enhanced RVVTS,
referred to as FP-RVVTS, adds support for the RISC-V FP
extensions (F, D, Zth) through a novel context-free grammar
specification with annotations, strengthened automatic single-
instruction isolation, and improved failure cause analysis.

In the experiments we show that FP-RVVTS generates FP test
sets achieving over 95% functional coverage, reveals critical bugs
in several RISC-V simulators, and, using isolated instructions,
supports to narrow down the causes of failures.

I. INTRODUCTION

Floating-point (FP) computation is pervasive in modern
systems, from scientific simulation and signal processing to
computer graphics, machine learning, and safety-critical ap-
plications (see e.g. [1]-[3]). Incorrect FP behavior in these
domains can cause subtle numerical errors that are hard to
detect yet may compromise system reliability. At the same
time, FP arithmetic is challenging to implement and verify:
it approximates real numbers with finite precision, supports
special values such as Not a Numbers (NaNs), infinities, and
subnormals, and offers multiple rounding modes and exception
flags, leading to many corner cases that are rarely exercised
by conventional testing [4], [5].

The IEEE 754 standard [6], which specifies FP semantics,
has been revised and extended over time, adding operations
and tightening requirements. This ongoing evolution further
increases the verification effort, as hardware implementations,
simulators, and software libraries must remain compliant
with a changing specification while still meeting performance
and area constraints. These challenges are particularly rel-
evant for open Instruction Set Architectures (ISAs) such as
RISC-V [7], [8], where a diverse set of processors, simulators,
and toolchains coexist and evolve in parallel.

In this work, we examine the FP backbone of modern
RISC-V simulators: the SoftFloat (SF) [9] and the FloppyFloat
(FF) [10] libraries on which they rely. SF is a widely used,
bit-accurate IEEE 754 reference library from UC Berkeley,
whereas FF is a hybrid library designed to offer SF-compatible
semantics at higher performance [11]. Concretely, we consider
the simulators RISC-V VP++ [12] (in variants using SF and
FF), Spike FF [10] (a performance-tuned version of the offi-
cial RISC-V golden reference simulator Spike from RISC-V
International), and QEMU [13], which also employs SF.

This work has partially been supported by the LIT Secure and Correct
Systems Lab funded by the State of Upper Austria.

manfred.schlaegl @jku.at

daniel.grosse @jku.at

With the proposed FP-RVVTS, we systematically verify
the FP behavior of these RISC-V simulators, effectively
staging a direct “float fight” between their underlying SF- and
FF-based FP implementations.

There is substantial work on general RISC-V instruc-
tion generation and processor verification (e.g. [14]-[22]), as
well as open-source constrained-random generators such as
Google’s RISCV-DV [23]. These approaches mainly target
overall ISA correctness and compliance, but are not specialized
for high-coverage verification of the RISC-V FP extensions or
the interplay of different FP libraries. For example, [21] fuzzes
RISC-V processors with long, valid programs and has also
uncovered FP bugs, yet it still treats FP as just one aspect of
overall processor correctness and does not focus on system-
atic FP-centric verification across different simulators or FP
libraries. RISCV-DV initializes FP registers only once at the
beginning of a test with special values, which limits operand
diversity and thus FP coverage, as also discussed in [24]. To
the best of our knowledge, the only RISC-V-specific work
that directly targets FP instruction verification is [24], which
proposes coverage and constraint-based test generation for
RV32F on one concrete RTL processor. However, their flow
is not open-source, is limited to 32-bit single precision, and
does not address off-the-shelf RISC-V simulators, alternative
FP libraries, or techniques to improve failure analysis.

II. FP-RVVTS

We introduce FP-RVVTS, an enhanced version of
RVVTS [18], an open-source framework for positive and
negative testing [25] of RISC-V vector instructions, to enable
comprehensive FP verification across various RISC-V simu-
lators and FP libraries. FP-RVVTS incorporates a context-free
FP grammar to cover the RISC-V FP extensions and enriches
it with dependency annotations to enable more effective re-
ductions. As in RVVTS, the generated tests are automatically
executed on both a reference simulator and Design Under Test
(DUT), where differences in the resulting architectural states
are detected and used as input for isolation and minimization
of failing instructions.

Floating-point Grammar: To generate valid FP assembly,
the Instruction Sequence Generator (ISG) is augmented with
a RISC-V FP grammar. We cover the F, D, and Zfh extensions
for both RV32 and RV64, configured according to the target
architecture. The grammar reflects these configurations, in
particular for conversion instructions (e.g., fcvt.s.d and
fcvt.1.s). In RISC-V, the rounding mode can be set globally
via the Control and Status Register (CSR) field frm or per

TABLE I: Overview of Test Sets generated by FP-RVVTS

TABLE II: Reported Failures for different Test Setups

TS Coverage Float Ratio Tests ID DUT TS Fails Isolated Instructions

pos 95.44% 51.80% (42,187/81,447) 5,353 1 RISC-V VP++ FF pos 852 fcvt.wu.d/s

neg 96.73% 53.48% (43,530/81,394) 5,340 2 RISC-V VP++ FF neg 1858 [fld)/w/h, fsd/w/h, fmv.x.h,

fcvt.wu.d /s, fcvt.lu.d
instruction via a suffix (e.g., fsqrt.d f1, f2, rne). We 3 RISC-V VP++ SF pos 373 fmax.d/s, fmin.d/s
support both mechanisms, individually and in combination. ~ *+ RISC-V VP++SE neg 1758 ﬁidn/ v(;//l; f;n%/ ";’(/ }}11 fmax.d/s/h,
The grammar enforces architectural support (unsupported con- 5 Spike FF pos 1 frmadd.d
versions do not compile), configures frm, and allows indepen- 6 Spike FF neg 1 fdiv.s
dent per-instruction rounding-mode suffixes. okl pos e
Dependency Annotation: I f a failure, FP-RVVTS —> %) e 9 -
. ependency Annota mr.l' n Cas.e ol a farlure, T Golden reference: Spike (with SF) from RISC-V International
improves test case reduction by using dependency annotations
in the grammar. While RVVTS can pinpoint a failure to a single TABLE III: Cause Analysis of Isolated Instructions (Selection)
instruction, FP-RVVTS also produces a minimal snapshot Instruction Location Bug
of thfa .system state 1mmedlat§1y before that 1nstFuct10n - fmax.d RISC-V VP++ S NaN handling
containing only the relevant registers and configuration CSRs f1d RISC-V VP++ FP cnable check
— thereby easing debugging significantly. fevt.wu.d RISC-V VP++ FF NaN handling
fdiv.s Spike FF flag generation
III. EXPERIMENTS fmv.x.h RISC-V VP++ precision mismatch handling

In our experiments we consider 8 test setups, a combination
of 4 DUTs and 2 test sets. FP-RVVTS and the DUTs have
been configured for RV641FD_Zfh, providing the broadest FP
coverage supported across all tested simulators. The two test
sets are generated using FP-RVVTS, one targeting positive
testing (pos) and one targeting negative testing (neg). For both
test sets, Table I lists, from left to right, the functional coverage
achieved!, the ratio of FP to total instructions, and the number
of tests generated. As can be seen, FP-RVVTS achieves more
than 95% functional coverage for both of them.

Table II summarizes the test results for the 8 test se-
tups consisting of ID, DUT, and TS (Test Set). Recall that
FP-RVVTS uses Spike (with SF) as golden reference model,
i.e., the official RISC-V reference simulator maintained by
RISC-V International. As DUTs, we use RISC-V VP++ [12]
with either FF [11] or SF [9] as the FP library, Spike FF [10],
and QEMU [13]. The column Fails shows the number of
failures reported by FP-RVVTS, and the last column provides
the corresponding isolated instructions. As can be seen, our
approach found a huge number of failures for RISC-V VP++
independent of the used FP library (ID 1-4). For Spike FF
also 2 failures have been determined (ID 5-6). In contrast, for
QEMU no failures have been identified. What also becomes
evident from Table II is the importance of negative testing as
in most cases the number of failures is higher in comparison
to the corresponding positive testing. In the following, we
discuss how FP-RVVTS helps in narrowing down the cause
of the failure. For this analysis, we consider the isolated
instructions shown in the rightmost column of Table II, which
are automatically determined by our approach leveraging the
strengthened single instruction isolation technique. For exam-
ple, the instruction fmax.d is isolated (among others) in ID
3 and 4 with RISC-V VP++ SF as DUT. Since the reference
model Spike also uses SF, this indicates that the failure is
caused by an incorrect use of the SF library in RISC-V VP++.

By analyzing other isolated instructions and their DUTs, in-
cluding associated test sets, we can analogously derive specific

I'We use riscvOVPsim [26] measuring only F and D extensions of RISC-V.

locations. Sometimes it is even possible to narrow down the
problem further (cf. discussion of [fld below). An overview
for the cause analysis (selection) are given in Table III. Here,
Location represents the result of the previous analysis, whereas
Bug describes the cause of the problem. Let’s examine the bug
for the four colored isolated instructions:

fmax.d: This instruction receives two FP values and re-
turns their maximum. In all failing cases, Spike and the DUT
(RISC-V VP++ SF) disagree only when at least one input is
NaN. Spike returns the non-NaN operand, whereas the DUT
returns NaN. Per the RISC-V specification [27, Sec. 20.6], the
semantics changed in v2.2: before v2.2 the result was NaN;
since v2.2 it is the non-NaN operand. Thus, the bug stems
from RISC-V VP++ implementing the pre-v2.2 behavior.

fld: This instruction loads an FP value from memory
into an FP register. Failures only occur in the negative
tests (ID 2 and ID 4) with both FP libraries, indicating a
RISC-V VP++ bug rather than a library issue: when the FP
extension is disabled, Spike correctly raises an exception, but
RISC-V VP++ executes the instruction because its load logic
omits the required FP-extension-enabled check.

fevt.wu.d: RISC-V VP++ FF correctly computes the
NaN result as 232 — 1 but then incorrectly zero-extends the
32-bit value to 64 bits instead of sign-extending it as required
by the RISC-V specification.

fdiv.s: This is an arithmetic instruction with a single
failing case. The mismatch concerns the underflow exception
flag: Spike sets this flag as intended, whereas Spike FF does
not, indicating a bug in Spike FF.

To summarize, FP-RVVTS systematically verified the FP
backbones of modern RISC-V simulators and, in the “float
fight”, their SF/FF libraries, exposing a diverse set of pre-
viously unknown bugs — from outdated NaN semantics and
missing FP-enable checks to incorrect sign extension and
exception-flag handling. FP-RVVTS precisely narrows down
each failure, making these issues easy to pinpoint and act upon,
and thus may emerge as a practical open-source approach to
“harden” the floating-point ecosystem of RISC-V.

[1]

[2]

[3]

[6

=

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23
[24]

REFERENCES

D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of FLUCTUAT on safety-critical avionics
software,” in Formal Methods for Industrial Critical Systems (FMICS
2009), 2009, pp. 53-69.

M. Cococcioni, E. Ruffaldi, and S. Saponara, “Exploiting posit arith-
metic for deep neural networks in autonomous driving applications,” in
International Conference of Electrical and Electronic Technologies for
Automotive (AUTOMOTIVE 2018), 2018, pp. 1-6.

J. S. Kole and F. J. Beekman, “Evaluation of accelerated iterative x-
ray CT image reconstruction using floating point graphics hardware,”
Physics in Medicine and Biology, vol. 51, no. 4, pp. 875-889, 2006.
D. Monniaux, “The pitfalls of verifying floating-point computations,”
ACM Transactions on Programming Languages and Systems, vol. 30,
no. 3, pp. 12:1-12:41, May 2008.

J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,

V. Lefevre, G. Melquiond, N. Revol, and S. Torres, Handbook of

Floating-Point Arithmetic, 2nd ed. Birkhéuser, 2018.

IEEE Standard for Binary Floating-Point Arithmetic, IEEE Computer
Society Std. IEEE Std 754-1985, 1985.

A. Waterman and K. Asanovi¢, The RISC-V Instruction Set Manual;
Volume I: Unprivileged ISA, SiFive Inc. and CS Division, EECS De-
partment, University of California, Berkeley, 2019.

, The RISC-V Instruction Set Manual; Volume II: Privileged Archi-
tecture, SiFive Inc. and CS Division, EECS Department, University of
California, Berkeley, 2019.

J. R. Hauser, “Berkeley SoftFloat,”
berkeley-softfloat-3.

N. Zurstraen, “Modified Spike using FloppyFloat,” https://github.com/
not-chciken/riscv-isa-sim, 2025.

N. ZurstraBen, N. Bosbach, and R. Leupers, “FloppyFloat: An open
source floating point library for instruction set simulators,” in Design,
Automation and Test in Europe Conference (DATE), 2025, pp. 1-6.

M. Schldgl, C. Hazott, and D. GroBe, “RISC-V VP++: Next generation
open-source virtual prototype,” in Workshop on Open-Source Design
Automation (OSDA), 2024.

“QEMU a generic and open source machine emulator and virtualizer,”
https://www.qemu.org, 2025.

V. Herdt, D. GroBe, and R. Drechsler, “Towards specification and testing
of RISC-V ISA compliance,” in Design, Automation and Test in Europe
Conference (DATE), 2020, pp. 995-998.

V. Herdt, D. GroBe, E. Jentzsch, and R. Drechsler, “Efficient cross-level
testing for processor verification: A RISC-V case-study,” in Forum on
Specification and Design Languages (FDL), 2020, pp. 1-7.

L. Klemmer and D. GroBe, “EPEX: processor verification by equiv-
alent program execution,” in ACM Great Lakes Symposium on VLSI
(GLSVLSI), 2021, pp. 33-38.

N. Bruns, V. Herdt, E. Jentzsch, and R. Drechsler, “Cross-level processor
verification via endless randomized instruction stream generation with
coverage-guided aging,” in Design, Automation and Test in Europe
Conference (DATE), 2022, pp. 1123-1126.

M. Schldgl and D. GroBe, “Single instruction isolation for RISC-
V vector test failures,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2024, pp. 156:1-156:9.

J. Xu, Y. Liu, S. He, H. Lin, Y. Zhou, and C. Wang, “MorFuzz: Fuzzing
processor via runtime instruction morphing enhanced synchronizable co-
simulation,” in USENIX Security Symposium (USENIX), 2023, pp. 1307-
1324.

P. Liu, W. Hu, D. Liu, X. Han, and Y. Liu, “A RISC-V test sequences
generation method based on instruction generation constraints,” Journal
of Electronics & Information Technology, vol. 45, no. 9, pp. 3141-3149,
2023.

F. Solt, K. Ceesay-Seitz, and K. Razavi, “Cascade: CPU fuzzing via in-
tricate program generation,” in USENIX Security Symposium (USENIX),
2024, pp. 5341-5358.

A. Joannou, P. Rugg, J. Woodruff, F. A. Fuchs, M. van der Maas,
M. Naylor, M. Roe, R. N. M. Watson, P. G. Neumann, and S. W.
Moore, “Randomized testing of RISC-V CPUs using direct instruction
injection,” IEEE Design & Test, vol. 41, no. 1, pp. 40-49, 2024.
“RISCV-DV,” https://github.com/google/riscv-dv, 2024.

T. Lu, A. Liu, B. Xia, and P. Liu, “Comprehensive RISC-V floating-
point verification: Efficient coverage models and constraint-based test
generation,” in Design, Automation and Test in Europe Conference
(DATE), 2025, pp. 1-7.

https://github.com/ucb-bar/

[26] Imperas,

[25] V. Herdt, D. GroBe, and R. Drechsler, “Closing the RISC-V compliance

gap: Looking from the negative testing side,” in Design Automation
Conference (DAC), 2020, pp. 1-6.
“riscvovpsim,”
imperas-riscv-tests, 2025.

https://github.com/riscv-ovpsim/

[27] “The RISC-V Instruction Set Manual, Volume I: User-Level ISA)’

RISC-V Foundation, Nov. 2025, document version 20251126.

https://github.com/ucb-bar/berkeley-softfloat-3
https://github.com/ucb-bar/berkeley-softfloat-3
https://github.com/not-chciken/riscv-isa-sim
https://github.com/not-chciken/riscv-isa-sim
https://www.qemu.org
https://github.com/google/riscv-dv
https://github.com/riscv-ovpsim/imperas-riscv-tests
https://github.com/riscv-ovpsim/imperas-riscv-tests

	Introduction
	FP-RVVTS
	Experiments
	References

