Late Breaking Results: Waveform-based Performance Analysis of
RISC-V Processors

Lucas Klemmer
Institute for Complex Systems
Johannes Kepler University Linz
Linz, Austria
lucas.klemmer@jku.at

ABSTRACT

In this paper, we demonstrate the use of the open-source domain
specific language WAL to analyze performance metrics of RISC-V
processors. The WAL programs calculate these metrics by evaluating
the processors signals while “walking” over the simulation wave-
form (VCD). The presented WAL programs are flexible and generic,
and can be easily adapted to different RISC-V cores.

1 INTRODUCTION

Today, the processor market is dominated by few proprietary In-
struction Set Architectures (ISAs) and only a handful of very large
corporations. RISC-V is an open and royalty free ISA [10] striving
for innovation through collaboration. The open nature of RISC-V
enabled even small companies as well as community projects to
develop their own processors which take advantage from RISC-V’s
permissive license and its extensibility to explore new ideas and
markets with often highly specialized hardware.

However, this development brings its own set of challenges since
the sheer number of available RISC-V cores, which are often highly
configurable and extensible, makes it very hard and time-consuming
for both, designers and users, to compare different cores and core con-
figurations against each other [6, 9]. A sophisticated analysis of the
cores is needed to obtain relevant performance metrics. Since a wide
range of cores has to be evaluated, the analysis solution must satisfy
several requirements: (1) the analysis must be powerful enough to
cover complex analysis tasks, (2) it must be implementation-agnostic
and easy to port to new cores, and (3) it must be easy to integrate
into existing workflows.

In this paper, we use the open-source Waveform Analysis Lan-
guage (WAL) [5] to analyze relevant metrics for several RISC-V imple-
mentations ranging from extremely area efficient ones to pipelined
cores with higher performance. WAL has been realized as a Domain
Specific Language (DSL) [8]. The language allows creating analysis
programs using the values from the VCD waveforms generated dur-
ing simulation of a RISC-V core. Our contributions are flexible WAL
programs for different performance metrics. The programs can be
adapted and used on a wide variety of RISC-V microarchitectures.

Our experimental results demonstrate that the WAL-based analy-
sis can clearly highlight the differences between the analyzed cores.
In addition, we can quantify the performance improvements of dif-
ferent core configurations that can be set by enabling additional
features, such as instruction caches or branch prediction.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC 22, July 10-14, 2022, San Francisco, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9142-9/22/07...$15.00

https://doi.org/10.1145/3489517.3530623

Daniel Grofie
Institute for Complex Systems
Johannes Kepler University Linz
Linz, Austria
daniel.grosse@jku.at

instr_done / \ / \ / \
instr_value jazi...\ /§70...\ /178...\

: (&& clk instr_done) =true

Figure 1: Waveform of instruction control and data signals.

2 PROCESSOR ANALYSIS WITH WAL

We demonstrate how flexible and generic processor analysis pro-
grams can be created in WAL. To this end, we first illustrate how
WAL programs work (Section 2.1). Then, we introduce WAL pro-
grams to analyze the number of executed instructions per cycle
(Section 2.2) and to calculate the percentage of cycles with stalled
pipeline stages (Section 2.3). We consider four well known RISC-V
cores. Two of the cores are small and area efficient [2, 3], while the
other two cores are more sophisticated, pipelined, and capable of
running Linux in some configurations [1, 4, 7].

2.1 WAL Program Principle

In comparison to other programming languages, WAL programs
have direct access to all signal values of a waveform. Accessing sig-
nals in WAL is similar to accessing variables with the difference that
the value returned depends on the loaded waveform and the time
at which the signal is accessed. Consider the waveform in Figure 1.
The WAL expression (8& clk instr_done)1 returns true at a given time
point in the waveform if and only if the clk and instr_done signals
are both set to 1. In Figure 1, all time-points at which the expression
evaluates to true are highlighted in green. WAL provides a large
collection of functions that can be used to analyze waveforms. For
example, the count function can be used to count how many in-
structions are executed on the waveform with the WAL expression
(count (&& clk instr_done)).

2.2 Instructions Per Cycle

First, we analyze the raw performance of each core in terms of exe-
cuted Instructions Per Cycle (IPC). Since all analyzed cores are single
core architectures, the best theoretical IPC score is 1.0. This means
that the core executes and commits one instruction in each clock
cycle. However, this is almost impossible to achieve, for example,
due to branching and memory induced delays.

The WAL program for IPC analysis is split into two separate parts,
a generic and core-independent analysis part and the core-specific
code which has to be provided by the user.

The generic WAL program to perform the IPC analysis is shown
in Listing 1. The function performs the IPC analysis for all waveforms
passed in the traces parameter. For each trace, first, the trace is loaded
in Line 3 and then the optional setup function is called in Line 4.
The optional setup and clean-up functions can be defined by the
users to perform core-specific setup and clean operations. Then, the
number of executed instructions is calculated in Line 5 using the

WAL uses a LISP style prefix notation.

https://doi.org/10.1145/3489517.3530623

(defun calc-ipc [traces]
(for [trace traces]

(load trace t)
(setup)
(set [instructions (count (&& (is-valid) (instr-done)))])
(set [ipc (fdiv 1 (fdiv (count (is-valid)) instructions))])
(printf "%40s:_%15.2f\n" trace ipc)
(clean-up)
(unload t)))

Listing 1: Generic WAL Function for IPC Analysis

(defun is-valid [] (&& TOP.IO_CLK TOP.IO_RST_N))
(defun instr-done []
TOP.ibex_simple_system.u_top.u_ibex_top.u_ibex_core.id_stage_i.instr_done)

R A . I NI R R

(require riscv-lib)
(calc-ipc '("ibex-default.ved" "ibex-icache.vcd"))

Listing 2: IBEX specific code for the IPC analysis

[B N

(defun setup [(stages stages)] (set [stages (groups "isMoving")]))
(defun is-valid [] (&& TOP.clk (! TOP.reset)))
(defun is-stalled [(stages stages)]

(in 0 (map (lambda [stage] (in-group stage #isMoving)) stages)))

(require riscv-lib)
(calc-pipeline-stall '("vexrv-smallest.vcd" "vexrv-full.ved"))

P S N

Listing 3: VexRiscv specific pipeline-stall analysis code

user-supplied is-valid and instr-done functions (see below). The idea
is to count how often the predicates is-valid and instr-done evaluate
to 1 on the waveform and then to assign the result to the variable
instructions via the set function of WAL. Next, the resulting IPC value
is calculated in Line 6. We divide the number of total valid cycles by
the number of executed instructions, take the reciprocal value, and
print it in Line 7. Finally, the optional clean-up function is called and
the trace is unloaded from the WAL environment in Line 9.

To perform the IPC analysis on a new RISC-V core, users only
have to provide the two is-valid and instr-done functions. Lines 1-3
in Listing 2 show the implementations of these functions for the
IBEX processor. The IBEX processor always sets the instr_done sig-
nal inside the id_stage_i module to 1 whenever an instruction is
completed. Therefore, the instr-done function only has to return the
value of this signal. After the definition of the required functions,
the IPC analysis can be started. First, in Line 5 of Listing 2 we import
our WAL RISC-V library to have access to the WAL definitions of
the IPC analysis. Then, in Line 6 we call the calc-ipc function with a
list of waveform files for which we want to perform the analysis (in
the example the two IBEX VCDs default and icache, respectively).

2.3 Pipeline Stall Activity

In addition to the IPC analysis, the WAL RISC-V library also supports
calculating the percentage of cycles with stalled pipeline stages. For
example, this metric is useful to access how efficient the branch
prediction is working. The pipeline stall analysis works similar to
the IPC analysis in the sense that users can use a generic library
function and only have to provide certain processor specific func-
tions themselves. The users have to provide the function is-valid and
is-stalled. Listing 3 shows the processor specific code required for
the pipeline stall analysis on the VexRiscv processor. The is-stalled
function should return true at each time-point where some part of
the pipeline is stalled. Consider the VexRiscv pipeline: Each stage
has an isMoving signal which can be used to determine if the stage
is currently stalled. We get a list of all groups associated with the
pipeline stages in the setup function, which is called before the main
analysis. The is-stalled function is defined in Line 3. This function
creates a list with the values of each isMoving signal and checks if
this list contains a 0 which indicates that this pipeline stage is cur-
rently stalled. By using the in-group function we can get the value of

Table 1: Analysis Results

Core Configuration IPC Stalled Cycles
SERV servant 0.02 not pipelined
PicoRv32 default 0.24 not pipelined
VexRiscv microNoCsr 0.33 63%
VexRiscv smallest 0.33 66%
VexRiscv smallAndProductive 0.42 54%
VexRiscv smallAndProductivelCache 0.47 51%
VexRiscv twoThreeStage 0.47 48%
VexRiscv secure 0.57 42%
VexRiscv linux 0.59 38%
VexRiscv full 0.57 35%
VexRiscv fullNoMmuMaxPerf 0.63 33%
IBEX default 0.63 48%
IBEX icache 0.89 19%

all isMoving signals even if the actual location of the signal changes
or the number of pipeline stages varies. In Line 2 the is-valid func-
tion, which is similar to the implementation for the IBEX core, is
implemented. Finally, the RISC-V library is imported in Line 6 and
the analysis is started on two waveforms in Line 7.

3 EXPERIMENTAL RESULTS

The results for the IPC and pipeline stall activity are summarized
in Table 1. To get the experimental results we analyzed the wave-
forms produced by running the Dhrystone benchmark on each core.

The Core column shows the name of the analyzed RISC-V core and
the Configuration column shows the core configurations. Columns
IPC and Stalled Cycles show the number of instructions per cycle and
the percentage of cycles with stalled pipeline stages, respectively.
The IPC results show large differences in the performance of the
evaluated cores. For example, the IBEX icache configuration is more
than 44 times faster than the SERV core. Enabling more sophisti-
cated features, e.g. better branch prediction, for the VexRiscv and
IBEX cores clearly shows that the number of cycles in which the
pipeline is stalled decreases significantly. This also correlates with
the performance improvements seen in the IPC column.

4 CONCLUSIONS

In this paper, we have demonstrated the use of the open-source lan-
guage WAL to analyze performance metrics. We have shown that
the analysis programs can be written in a generic form and microar-
chitecture specific details can be handled via user-defined functions.
In the experiments our analysis programs highlighted large perfor-
mance differences on RISC-V cores with diverse microarchitectures.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure and Correct
Systems Lab funded by the State of Upper Austria.

REFERENCES

[1] 2022. GitHub - IBEX. https://github.com/lowRISC/ibex.

[2] 2022. GitHub - PicoRV32. https://github.com/YosysHQ/picorv32.

[3] 2022. GitHub - SERV. https://github.com/olofk/serv.

[4] 2022. GitHub - VexRiscv. https://github.com/SpinalHDL/VexRiscv.

[5] 2022. WAL the Waveform Analysis Language. https://github.com/ics-jku/wal.

[6] Dérflinger et al. 2021. A Comparative Survey of Open-Source Application-Class
RISC-V Processor Implementations. In CF. 12-20.

[7] Davide Schiavone et al. 2017. Slow and steady wins the race? A comparison of
ultra-low-power RISC-V cores for Internet-of-Things applications. In PATMOS.
1-8.

[8] Lucas Klemmer and Daniel Grole. 2022. 'WAL: A Novel Waveform Analysis

Language for Advanced Design Understanding and Debugging. In ASP-DAC. 358-

364.

Ed Sperling. 2022. Which Processor Is Best? https://semiengineering.com/which-

processor-is-best.

[10] Andrew Waterman and Krste Asanovi¢. 2019. The RISC-V Instruction Set Man-

ual; Volume I: Unprivileged ISA. SiFive Inc. and CS Division, EECS Department,
University of California, Berkeley.

—_
L

https://github.com/lowRISC/ibex
https://github.com/YosysHQ/picorv32
https://github.com/olofk/serv
https://github.com/SpinalHDL/VexRiscv
https://github.com/ics-jku/wal
https://semiengineering.com/which-processor-is-best
https://semiengineering.com/which-processor-is-best

	Abstract
	1 Introduction
	2 Processor Analysis with WAL
	2.1 WAL Program Principle
	2.2 Instructions Per Cycle
	2.3 Pipeline Stall Activity

	3 Experimental Results
	4 Conclusions
	References

