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Abstract—Formal verification methods have made huge progress
over the last decades. However, proving the correctness of arith-
metic circuits involving integer multipliers still drives the veri-
fication techniques to their limits. Recently, Symbolic Computer
Algebra (SCA) methods have shown good results in the verification
of both large and non-trivial multipliers. Their success is mainly
based on (1) reverse engineering and identifying basic building
blocks, (2) finding converging gate cones which start from the
basic building blocks and (3) early removal of redundant terms
(vanishing monomials) to avoid the blow-up during backward
rewriting.

Despite these important accomplishments, verifying optimized
and technology-mapped multipliers is an almost unexplored area.
This creates major barriers for industrial use as most of the
designs are area and delay optimized. To overcome the barriers,
we propose a novel SCA-method which supports the formal
verification of a large variety of optimized multipliers. Our method
takes advantage of a dynamic substitution ordering to avoid the
monomial explosion during backward rewriting. Experimental
results confirm the efficiency of our approach in the verification
of a wide range of optimized multipliers including industrial
benchmarks.

I. INTRODUCTION

An integer multiplier is one of the most frequent units in
many applications (e.g. signal processing, cryptography, and
machine learning). The wide variety of multiplication algo-
rithms and a large number of building blocks make it one of
the most complex parts of many designs. Integer multipliers
are usually optimized in terms of area and delay particularly
in industrial applications where having an efficient design
is critical. Formal verification of the optimized multipliers
is highly important to ensure the correctness of the circuit
after optimization. However, the effects of optimization on the
multiplier structure make the verification a tough challenge.

In the last 20 years, several formal verification methods have
been proposed to prove the correctness of integer multipliers.
However, they have serious disadvantages: (a) Decision Di-
agrams (DDs) (such as BDDs and *BMDs) [1] suffer from
memory blow-up when the multipliers are large, (b) Boolean
satisfiability (SAT) and Satisfiability Modulo Theories (SMT)
face exponential run-times when the bit-width increases, (c)
Theorem Proving [2] needs manual effort, and (d) Term Rewrit-
ing [3] is not fully automated as a manual update of rewrite rules
is necessary for implementations which are not yet represented
in the database.

Recently, Symbolic Computer Algebra (SCA) approaches
have addressed many challenges of formal verification, see for
instance [4], [5], [6], [7], [8], [9], [10], [11], [12]. SCA-based
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multiplier verification generally consists of three main steps:
1) representing the function of the multiplier based on its inputs
and outputs as a Specification Polynomial SP , 2) capturing
the logical gates (nodes) as a set of polynomials PG, and
3) proving the membership of SP in the ideal generated by
PG using Gröbner basis theory.

In the just mentioned 3rd step, SP is divided by PG in a
step-wise process called backward rewriting, and eventually, the
remainder is evaluated. If this remainder is zero, the multiplier
is correct; otherwise, it is buggy.

The local removal of redundant monomials (so-called van-
ishing monomials) and reverse engineering have boosted the
efficiency of SCA-based methods in verifying both large and
non-trivial multipliers. Recently, [10] showed that (i) the vanish-
ing monomials cause an explosion in the number of monomials
during backward rewriting of non-trivial multipliers, and (ii) the
vanishing monomials are formed when substituting a converging
gate, i.e. a gate to which both outputs of a Half Adder (HA)
converge. Hence, algorithms for detecting Converging Gate
Cones (CGCs) and early removal of vanishing monomials have
been proposed to make the global backward rewriting phase
vanishing-free. Furthermore, [13] demonstrated that identifying
basic building blocks called atomic blocks, e.g. HAs, Full
Adders (FAs), etc., is essential in revealing all vanishing mono-
mials and finally to speed up the overall verification process.

Despite the progress in formal verification of multipliers,
still proving the correctness of optimized designs is an almost
unexplored area. Applying the state-of-the-art SCA-based verifi-
cation methods to optimized multipliers leads to an explosion in
the backward rewriting phase. The reason for the explosion is
that optimization typically destroys the boundaries of several
atomic blocks. As a consequence, the compact word-level
polynomials for the “lost atomic blocks” are no longer available
during backward rewriting. Likewise the static substitution order
for backward rewriting of the state-of-the-art SCA-verifiers
becomes now susceptible to the ordering of the nodes for lost
atomic blocks.
Contribution: In this paper, we introduce the novel
SCA-method DYPOSUB1 to verify optimized and industrial
multipliers. We first investigate how optimization changes the
structure of a multiplier netlist. As a result of these changes, the
state-of-the-art SCA-verifiers fail and we analyze the reasons,
i.e. in particular the effect of destroyed boundaries for atomic
blocks during backward rewriting. We then show that this effect
can be mitigated by a dynamic substitution order which

1Our tool DYPOSUB is available on GitHub; links can be found at
http://www.sca-verification.org/dyposub

http://www.sca-verification.org/dyposub
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SP := 8Z3 + 4Z2 + 2Z1 + Z0 −A×B
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Fig. 2. Backward rewriting steps

allows keeping the size of the current specification polynomial
moderate. To the best of our knowledge, a dynamic substitution
order has not been considered before in SCA-verification. The
experimental results confirm that our proposed method can
verify a wide range of optimized multipliers including industrial
benchmarks which was not possible before.
Related Work: As mentioned above, a series of SCA-based
verification approaches emerged for integer multipliers in the
last five years [4], [5], [6], [7], [8], [10], [11], [12]. While
there has been significant progress from simple multiplier
architectures to complex architectures as well as in the size of
the multipliers, multipliers processed by strong logic synthesis
and technology mapping have been still out of reach for the
existing approaches. Moreover, the idea of dynamic substitution
ordering has not been investigated so far.

II. PRELIMINARIES

A. Multiplier Structure

Most integer multipliers consist of three stages: (1) Partial
Product Generator (PPG) which creates partial products from
two inputs, (2) Partial Product Accumulator (PPA) which
reduces partial products and computes their sums, and (3)
Final Stage Adder (FSA) which converts these sums to the
corresponding binary output.

We use an AND-Inverter Graph (AIG) representation of a
multiplier as input for our verification method (Fig. 1 shows
the AIG of a 2 × 2 multiplier). A great advantage of AIGs is
the possibility of advanced reverse engineering. Based on cut
enumeration, atomic blocks can be identified very fast, even in
multipliers with millions of nodes [14], [13].

B. SCA Verification

First, we briefly summarize some basics:
• Monomial: power product of the variables, i.e.

M = xa1
1 xa2

2 . . . xan
n where ai ≥ 0

• Polynomial: finite sum of monomials, i.e. P = c1M1 +
· · ·+ cjMj with coefficients in field k

• Division: Assuming p is a polynomial and F is a set of
polynomials, the division of p by F is denoted by p

F−→ r
where r is called remainder

The goal of SCA-based verification is to formally prove that
all signal assignments consistent with the AIG evaluate the
Specification Polynomial (SP ) to 0. The SP determines the
function of a multiplier based on its inputs and outputs, e.g. for
the 2 × 2 multiplier of Fig. 1 SP = 8Z3 + 4Z2 + 2Z1 +
Z0 − (2A1 + A0)(2B1 + B0) where 8Z3 + 4Z2 + 2Z1 + Z0

represents the word-level representation of the 4-bit output, and
(2A1+A0)(2B1+B0) represents the product of the 2-bit inputs.

Before verification, the nodes of an AIG should be modeled
as polynomials describing the relation between inputs and
outputs. Based on the type of nodes and edges, five different
operations might happen in an AIG. Assuming z is the output
and ni and nj are the inputs of a node:
z =ni ⇒ pN := z − ni, z = ni ∧ nj ⇒ pN := z − ninj ,

z =¬ni ⇒ pN := z − 1 + ni, z = ¬ni ∧ nj ⇒ pN := z − nj + ninj ,

z =¬ni ∧ ¬nj ⇒ pN := z − 1 + ni + nj − ninj (1)

The extracted node polynomials are in the form PN =
x − tail(PN ) where x is the node’s output, and tail(PN ) is
a function based on the node’s inputs.

Based on the Gröbner basis theory, all signal assignments
consistent with the AIG evaluate the specification polynomial
SP to 0, iff the remainder of dividing SP by the AIG node
polynomials is equal to 0 (see [15], [8], [16] for more details).

The step-wise division of SP by node polynomials is shown
in Fig. 2 for the 2× 2 multiplier. As the remainder is zero, the
circuit is bug-free. In integer multipliers, dividing SPi by a node
polynomial PNi = xi − tail(PNi) is equivalent to substituting
xi with tail(PNi) in SPi. For example, dividing SP3 by Pn11 in
Fig. 2 is equivalent to substituting n11 with tail(Pn11

) = n4n7

in SP3. (In the results we always replace powers xai
i with ai >

1 by xi, since xi can only take values from {0, 1}. In the theory
this corresponds to adding x2

i−xi to the node polynomials.) The
process of step-wise division (substitution) is called backward
rewriting. The existing SCA-based verification methods use a
static reverse topological order to substitute node polynomials
in the intermediate specification polynomial. We refer to this
intermediate polynomial as SPi in the rest of the paper.

During the backward rewriting of complex multipliers, a huge
number of redundant monomials known as vanishing monomials
are generated. Removing the vanishing monomials is essential
to avoid an explosion in the size of SPi. In [10] and [13]
a method has been presented which first performs a local
backward rewriting to remove the vanishing monomials early
in the so-called Converging Gate Cones (CGCs). Overall, this
allows a vanishing-free global backward rewriting.

III. CHALLENGES OF VERIFYING OPTIMIZED MULTIPLIERS

In this section, we first demonstrate how optimization changes
the structure of a multiplier netlist. As a result of these changes,
a major challenge arises for formal verification of multipliers
which we explain next.

A. Optimization and Multiplier Structure
Multiplication algorithms determine how the building blocks

are connected in each stage of a multiplier to reach a certain
design goal, e.g. minimum area or minimum delay [17]. Al-
though the type of building blocks and the connections largely
vary from one algorithm to another, there are standard building
blocks (also referred as atomic blocks). Examples include HAs,
FAs, MUXs, and carry predictors [18].

Example 1. Fig. 3a shows the AIG of a 3× 3 array multiplier
after reverse engineering and identifying the atomic blocks.
The first stage of the multiplier consists of nine AND gates
(i.e. n0, n1, . . . , n8) to generate partial products. The second
and third stages are made of HA and FA networks2 to reduce
partial products and perform the final addition. As can be seen

2A HA is denoted as Hi and an FA as Fk , respectively.
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Fig. 3. AIGs of 3× 3 array multiplier

in Fig. 3a, the boundaries of atomic blocks and the connections
between them are fully visible.

However, performing optimization on the multiplier netlist
completely changes the situation. More precisely, the effect of
optimization appears at two hierarchy levels:

1) Logic optimization inside building blocks: the number of
nodes in a building block shrinks, e.g. 11 AIG nodes of
an FA are reduced to 8 nodes. In this case, the overall
structure of the multiplier does not change significantly
(as long as the reverse engineering is still able to identify
the respective atomic block).

2) Logic optimization across building blocks: blocks are
merged to reduce the number of nodes and as a conse-
quence some block boundaries are removed. In this case,
identifying building blocks is no longer possible.

We now come back to the array multiplier example.

Example 2. Fig. 3b shows the AIG for the 3 × 3 array
multiplier after applying resyn3 optimization from abc [19].
While the overall number of AIG nodes is reduced by 15%, the
optimization destroys the boundaries of the two FAs F1 and F2,
respectively.

As becomes evident from the example, there are some nodes
in the circuit which have been part of atomic blocks (FAs in the
example) before optimization, but they cannot be identified as
any atomic blocks anymore. Moreover, in non-trivial multipliers
optimization may also change the boundaries of larger blocks,
e.g. n-bit MUXs, carry operators, partial product generator
units. Overall, losing block boundaries poses a major challenge
to SCA verification of integer multipliers which we detail in the
following section.

B. Challenge for Backward Rewriting of Optim. Multipliers

An important property of atomic blocks is the compactness
of the polynomials describing their input/output relations. For
example, the two most common atomic blocks, i.e. HA and FA,
can be expressed using the following word-level relations:

HA(in : X,Y out : C, S) ⇒ 2C + S = X + Y

FA(in : X,Y, Z out : C, S) ⇒ 2C + S = X + Y + Z (2)

Let’s have a look on backward rewriting when reaching
atomic blocks and such word-level polynomials: Substituting

an atomic block polynomial in SPi only slightly changes the
size of SPi (i.e. number of monomials). As a result, the size of
SPi remains almost identical.

Example 3. In Fig. 3a, substituting the HA and FA polynomials
increases the size of SPi by zero or one, respectively. For
example, substituting the F3 polynomial (2Out[5] + Out[4] =
W0 + W1 + W2) and the H3 polynomial (2W0 + Out[3] =
W3+W4) in the first and the second steps of backward rewriting
results in:3

SP := 32Out[5] + 16Out[4] + 8Out[3] + . . .

SP
F3−−→ SP1 := 16W2 + 16W1 + 16W0 + 8Out[3] + . . .

SP1
H3−−→ SP2 := 16W2 + 16W1 + 8W3 + 8W4 + . . . (3)

On the other hand, substituting later n0, n1, . . . , n8 (AND
gates) polynomials results in cancellation of two terms per AND
gate and reduces the size of SPi by two per AND gate.

If we now look on the overall backward rewriting algorithm
(and not only on a single substitution step), all existing SCA-
verifiers use a static pre-determined substitution order derived
from the topological sorting of the AIG nodes/circuit elements.
This worked out fine so far, as sharp increases in the size of SPi

are not occurring if most of the time atomic blocks are handled
as a whole – either by substituting word-level polynomials (if
possible) or at least by using a substitution order that substitutes
polynomials for the single outputs of atomic blocks strictly one
after the other. If we lose the block boundaries in optimized
multipliers, the exploitation of this knowledge is not possible
anymore. Thus, we observe much larger polynomials, and in
the worst-case a blow-up.

Example 4. In Fig. 3b, after substituting the F3 and H3 poly-
nomials, there are several degrees of freedom for the subsequent
substitutions respecting the reverse topological order of the
n0, n1, . . . , n24 nodes and H1, H2 components. A straight-
forward topological order results in a sudden increase in the
SPi size, and even an explosion in larger multipliers. For
example, using a topological order SO1 during the backward
rewriting of an optimized 8 × 8 array multiplier results in an
intermediate polynomial with 106, 938 monomials. However, by
using a different order SO2 we can limit the maximum size of
SPi to 203.

IV. SCA VERIFICATION USING DYNAMIC BACKWARD
REWRITING

In this section, we first give an overview of our proposed
approach DYPOSUB. Then, we introduce dynamic backward
rewriting which allows verification of optimized multipliers.

A. Overview

Algorithm 1 shows the top-level pseudo-code of our ap-
proach. The input is the AIG representation of a multiplier,
and the algorithm returns true (false) if the multiplier is correct
(buggy). In the first step, the specification polynomial SP is
created based on the size of the multiplier (Line 1). Then, the
atomic blocks are identified by reverse engineering (Line 2).
Subsequently, the converging gate cones are detected in the
remaining nodes which are not part of any atomic blocks

3The case that the left hand sides of word-level relations for atomic blocks
do not occur in the needed form in the SPi is discussed later in Section IV-B.



Algorithm 1 SCA Verification
Input: Multiplier M
Output: TRUE if M is correct, and FALSE otherwise
1: SP ← create specification polynomial (M )
2: AB ← reverse engineering (M )
3: CGC ← find converging gate cones (M,AB)
4: FFC ← find fanout-free cones (M,AB,CGC)
5: C ← CGC ∪ FFC
6: P ← extract polynomials (C)
7: P ← remove vanishing monomials (P )
8: r ← dynamic backward rewriting (SP,AB,C, P )
9: if r is equal to zero then return TRUE else return FALSE

(Line 3). The rest of the nodes are grouped into fanout-free
cones (Line 4). The polynomials for all cones are extracted
(Line 5 – Line 6) and the vanishing monomials are removed
(Line 7). Finally, we perform the proposed dynamic backward
rewriting (for details see next section) which is based on the
dynamic ordering of cone and block polynomials to obtain the
remainder (Line 8). If the remainder is zero the circuit is correct;
otherwise, it is buggy (Line 9).

B. Dynamic Backward Rewriting

Before introducing the dynamic backward rewriting, we first
make several definitions:

Definition 1. Atomic blocks, Converging Gate Cones (CGCs),
and Fanout-Free Cones (FFCs) are called Components. A
component has one output, if it is a CGC or an FFC; and
may have several outputs if it is an atomic block. A multiplier
consists of several components.

Definition 2. A component has a polynomial describing the
(word-level) relation of output(s) and inputs. In components with
one output (i.e. CGCs and FFCs), we have:

Out = F (IN1, IN2, . . . , INn) (4)

where Out is the sole output of the component, and
F (IN1, IN2, . . . , INn) is a polynomial based on the com-
ponent inputs. In components with more than one output
(i.e. atomic blocks), we have:

Out1 =F1(IN1, IN2, . . . , INn)

Out2 =F2(IN1, IN2, . . . , INn)

. . .

Outm =Fm(IN1, IN2, . . . , INn) (5)

where each output can be described as a polynomial based
on the primary inputs. There is also a more compact relation
between outputs and inputs in these components:

G(Out1, Out2, . . . , Outm) = F (IN1, IN2, . . . , INn) (6)

where G and F are polynomials based on the outputs and
inputs, respectively.

Example 5. In an FA with the inputs X , Y , and Z, and outputs
C and S, we have:

C = XY + XZ + Y Z − 2XY Z (7)

S = X + Y + Z − 2XY − 2XZ − 2Y Z + 4XY Z (8)

2C + S = X + Y + Z (9)

where (7) and (8) show the polynomials for carry and sum out-
puts, respectively. However, (9) indicates the compact relation
between outputs and inputs.

Definition 3. Substituting a component polynomial in the inter-
mediate specification polynomial (i.e. SPi) means finding and
replacing all the occurrences of component output(s) by the
corresponding polynomial(s) in SPi.

C

C1 C2 Cn

W1 W2 Wn

W

Fig. 4. Substitution candidate

Algorithm 2 Dynamic Backward Rewriting
Input: Specification Poly SP , Set of Components B, Set of Component Polys P
Output: Remainder r
1: SPi ← SP
2: while B is not empty do
3: CB ← Find eligible candidates in B for substitution
4: for each b ∈ CB do
5: O[b]←count occurrence(b, SPi)
6: sortedCB ← Sort CB in ascending order based on O
7: SPold ← SPi

8: threshold← 0.1; j ← 0; no candidate← TRUE
9: while no candidate is TRUE do

10: SPi ← Substitute (PsortedCB[j], SPi)
11: if (size(SPi)− size(SPold))/size(SPold) < threshold then
12: Remove sortedCB[j] from B
13: no candidate← FALSE
14: else
15: SPi ← SPold; j ← j + 1
16: if j ≥ size(SortedCB) then
17: j ← 0; threshold← threshold× 2

18: r ← SPi

19: return r

To ensure correct substitution, we need two rules: (1)
In components with more than one output (i.e. atomic
blocks), which have a compact word-level relation be-
tween inputs and outputs (see Equation (6)), we first
search for G(Out1, Out2, . . . , Outm) in SPi. Then, we
have to distinguish between two cases: If we have found
G(Out1, Out2, . . . , Outm), we directly substitute it by
F (IN1, IN2, . . . , INn); otherwise, we substitute each output
with the corresponding polynomials. Finding the exact G poly-
nomial is sometimes not possible, particularly in optimized
multipliers. Therefore, following this rule guarantees the correct
substitution. (2) Assume that C is a component with output W ,
and C1, C2, . . . , Cn are components having W as one of their
inputs (see Fig. 4). The C polynomial should be substituted only
after substituting the C1, C2, . . . , Cn polynomials. Following
this rule guarantees that a component polynomial needs to be
substituted only once during the backward rewriting as for
example the signal W never appears again in the SPi after
substituting the C polynomial. A component which satisfies this
rule and is ready for substitution is called a Candidate.

At each step of backward rewriting, there are several sub-
stitution candidates. As we discussed in Section III, choosing
a substitution order which keeps the size of SPi as small as
possible and avoids explosion in optimized multipliers is vital.
Therefore, we propose dynamic backward rewriting.

Algorithm 2 shows our proposed dynamic backward rewrit-
ing. The algorithm receives the specification polynomial, the set
of components, and their corresponding polynomials as inputs,
and performs all possible backward rewriting steps. First, the
substitution candidates are found (see Line 3 in Algorithm 2).
Then, the number of times which the output of each candidate
occurs in SPi is counted (Line 4 – Line 5). We sort the
candidates in ascending order based on the number of their
output occurrences in SPi (Line 6) and basically we try to
substitute them in SPi according to that order. The following
example motivates this choice:



Example 6. Consider the polynomial P = a + 4abc − 2ad −
2adc. Substituting a variable occurring k times in P by a
polynomial containing h monomials increases the number of
monomials in the result by k · (h − 1) in the worst case.
E.g. substituting a = x + y + z + xz in P results in a new
polynomial with 16 monomials. For this reason we refrain from
substituting variables with large numbers of occurrences in P
first. Instead we start with variables having smaller numbers of
occurrences and hope that cancellation of monomials improves
the situation when we finally arrive at the substitution of later
variables. Assume in the example that we substitute b = xy
first, then c = xz and then d = xyz, leading to P = a. After
substituting a = x+ y + z + xz we arrive at the final result of
the series of substitutions without exceeding a number of four
monomials in between.

In our experiments, we observed that the order mentioned
above successfully keeps the sizes of intermediate polynomials
small in many cases. Nevertheless, this method is only heuris-
tical and may fail. Therefore, before each substitution we make
a copy of SPi (Line 7) to which we may backtrack if the size
of the polynomial grows too much. Altogether, this leads to a
dynamic substitution order based on the growth behavior we
actually observe.

Example 7. Consider the polynomial P = abx+aby−2abxy+
ab + a. Substituting the 4 occurrences of b by m + n − mn
leads to a polynomial with 13 monomials. After substituting
a = xy in the resulting polynomial we arrive at 4 monomials.
However, if we substitute a (with one occurrence more than
b) first, we obtain 2 monomials after the first substitution and
again 4 monomials after substituting b. Of course, we prefer the
second order which we obtain if we discard the substitution of
b due to the size of the intermediate result.

In Algorithm 2, this idea is implemented as follows: After
making a copy of SPi (Line 7), the polynomial for the first
component in the sorted candidate list is substituted in SPi

(Line 10). We check the increase in size of the polynomials
after substitution. To avoid a sharp increase in the number of
monomials, we set the increase threshold to 10% (Line 8). If
the increase is less than the threshold, we recognize it as a
successful substitution. Thus, the candidate is removed from
the list of components (Line 12 – Line 13), and the process
is repeated by finding a new set of candidates (Line 3). On
the other hand, if the increase is more than the threshold,
then SPi is restored to its state before substitution, and the
process continues by substituting the next candidate in the
sorted list (Line 15). If there is no substitution of any candidate
that satisfies the threshold limit, the value of the threshold is
multiplied by two and the process is repeated from the first
candidate in the sorted list (Line 16 – Line 17).

In the next section we present the experimental results.

V. EXPERIMENTAL RESULTS

We have implemented the proposed approach DYPOSUB in
C++. The experiments have been carried out on an Intel Xeon
E3-1270 v3 with 3.50 GHz and 32 GByte of main memory.
First, we have evaluated our approach on a wide range of
optimized multipliers. The results are summarized in Table I.
Please note that the Time-Out (TO) has been set to 24 hours.

The first column Size of Table I shows the size of the multiplier
based on the input bits. The second column Benchmark lists
the architecture of the multiplier based on its stages (abbre-
viations are given below the table). These multipliers have
been generated using the Arithmetic Module Generator [20] and
GenMul [21]. The third column Optimiz. reports the performed
optimization: this is either none (-), or the well-known abc [19]
optimizations dc2 and resyn3, respectively.

The verification data of our proposed approach is reported
in the fourth column Verification data which consists of three
subcolumns: Nodes shows the number of AIG nodes of the
multiplier, Vanishing Monomials gives the total number of
removed vanishing monomials, and Max Poly Size shows the
maximum size of the current polynomial SPi during backward
rewriting by counting the number of monomials.

The fifth column Ours of Table I reports the overall run-
time of our proposed approach in seconds. Finally, the run-
times of the state-of-the-art verification methods are shown in
the sixth column which consists of seven subcolumns. While the
first subcolumn Com. reports the run-times of the commercial
verification tool from Onespin, the remaining subcolumns give
the run-times of the most recent available SCA approaches.

As can be seen, our approach is able to verify all
non-optimized multipliers and only produces a time out
for two benchmarks with optimization (SP◦BD◦KS and
SP◦WT◦CL; 4 instances in total). In contrast, none of the
state-of-the-art SCA methods can verify any of the optimized
multipliers. The commercial tool can prove one multiplier type
incl. the optim. version, however only the 16× 16 instance.

For one multiplier example we also demonstrate the effect of
the proposed dynamic ordering in more detail. Fig. 5 shows the
number of monomials (vertical axis) in each step of backward
rewriting (horizontal axis) for the 32-bit SP◦DT◦LF multiplier
with and without optimization. The black line represents the
use of a static ordering and the red line shows the polynomial
sizes when using the proposed dynamic backward rewriting.
Before optimization, both static and dynamic ordering allow
to verify the circuit (black and red lines overlap from approx
substitution step 300). However, when looking at both optimized
multipliers the static ordering leads to (several) peaks with
the consequence that the verification fails (see Fig. 5b and
Fig. 5c). In contrast, as can be seen in all three figures the
proposed dynamic ordering keeps the maximum size of SPi

small (orders of magnitudes smaller in comparison to the static
order). Therefore, the proposed approach successfully verifies
both optimized multipliers.

In a second experiment, we consider industrial benchmarks
from the Synopsys DesignWare Library. They have been op-
timized for delay. The gate-level Verilog description of these
multipliers is generated by mapping the multiplier IP to a
standard cell library consisting of up to 3-input logical gates
using Synopsys Design Compiler. Then, the Verilog description
is converted to AIG using abc. The results can be found in
Table II. In addition, the table also includes the highly optimized
multiplier from the EPFL combinational benchmark suite [22].
As can be seen, the proposed approach is able to prove the
correctness for all these multipliers while the commercial tool
can only verify the smallest instance and all other SCA methods
fail.



TABLE I
RESULTS OF VERIFYING OPTIMIZED MULTIPLIERS

Size Benchmark Optimiz.

Verification data Run-times (seconds)
Vanishing Max Poly

Nodes Monomials Size Ours Com. [13] [10] [6] [5] [11] [8]

16×16 SP◦DT◦LF
- 2,884 728 431 0.13 43.00 0.27 0.58 3.21 TO TO TO

dc2 2,115 27 318 0.04 40.00 TO TO TO TO TO TO
resyn3 2,702 1,120 433 0.06 43.00 TO TO TO TO TO TO

64×64

SP◦DT◦LF
- 48,808 2,249 7,256 7.22 TO 40.72 120.76 2,273.64 TO TO TO

dc2 36,365 5,618 8,734 16.82 TO TO TO TO TO TO TO
resyn3 45,115 3,038 6,908 7.58 TO TO TO TO TO TO TO

SP◦AR◦CK
- 48,073 0 4,284 5.33 TO 151.17 TO TO TO TO TO

dc2 36,154 0 4,285 5.30 TO TO TO TO TO TO TO
resyn3 43,501 0 4,284 5.41 TO TO TO TO TO TO TO

SP◦BD◦KS
- 50,756 613,454 5,607 14.30 TO 162.26 TO TO TO TO TO

dc2 37,655 - - TO TO TO TO TO TO TO TO
resyn3 47,746 - - TO TO TO TO TO TO TO TO

SP◦WT◦CL
- 68,875 266,684 4,461 19.76 TO 96.27 224.43 TO TO TO TO

dc2 44,643 - - TO TO TO TO TO TO TO TO
resyn3 63,962 - - TO TO TO TO TO TO TO TO

BP◦AR◦RC
- 38,439 0 20,099 21.50 TO 78.61 70.43 911.07 0.09 TO TO

dc2 31,312 0 15,882 21.43 TO TO TO TO TO TO TO
resyn3 34,317 0 20,097 23.21 TO TO TO TO TO TO TO

BP◦OS◦CU
- 39,798 0 25,803 34.68 TO 302.01 TO TO TO TO TO

dc2 31,925 0 26,200 50.78 TO TO TO TO TO TO TO
resyn3 37,156 0 20,100 27.12 TO TO TO TO TO TO TO

128×128

SP◦AR◦RC
- 162,304 0 16,640 108.82 TO 966.57 TO TO 1.10 TO TO

dc2 146,044 0 16,642 101.63 TO TO TO TO TO TO TO
resyn3 162,298 0 16,640 104.64 TO TO TO TO TO TO TO

SP◦DT◦LF
- 164,572 3,642 29,811 194.09 TO 527.37 TO TO TO TO TO

dc2 146,655 43,086 57,708 1905.57 TO TO TO TO TO TO TO
resyn3 150,711 4,900 28,721 196.68 TO TO TO TO TO TO TO

SP◦WT◦BK
- 166,938 1,623 22,406 172.14 TO 706.34 TO TO TO TO TO

dc2 149,353 4,160 26,911 329.81 TO TO TO TO TO TO TO
resyn3 154,146 1,808 22,347 161.30 TO TO TO TO TO TO TO

Stage 1 ⇒ SP: Simple partial product generator BP: Booth partial product generator TO: Time-Out
Stage 2 ⇒ AR: Array DT: Dadda tree WT: Wallace tree OS: Overturned-stairs tree BD: Balanced delay tree
Stage 3 ⇒ RC: Ripple carry BK: Brent-Kung LF: Ladner-Fischer CK: Carry-skip CU: Conditional sum CL: Carry look-ahead KS: Kogge-Stone

TABLE II
RESULTS OF VERIFYING INDUSTRIAL MULTIPLIERS

Source Size Nodes
Run-times (seconds)

Ours Com. [13] [10] [6] [5] [11] [8]

16× 16 2,432 0.13 40 TO TO TO TO TO TO
32× 32 7,240 2.27 TO TO TO TO TO TO TO
48× 48 16,086 16.97 TO TO TO TO TO TO TO

Synopsys 64× 64 27,658 62.69 TO TO TO TO TO TO TO
DesignWare 96× 96 61,180 506.86 TO TO TO TO TO TO TO

Library 128×128 106,949 1,861.56 TO TO TO TO TO TO TO
(pparch*) 160×160 166,492 4,569.96 TO TO TO TO TO TO TO

192×192 238,920 9,846.22 TO TO TO TO TO TO TO
256×256 422,077 29,988.20 TO TO TO TO TO TO TO

EPFL mul. 64× 64 27,190 76.89 TO TO TO TO TO TO TO
*Delay-optimized flexible Booth Wallace after technology mapping
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Fig. 5. SPi size during backward rewriting of 32-bit SP ◦DT ◦ LF using
static (black line) and dynamic (red line) orderings

VI. CONCLUSION

In this paper, we have proposed our novel SCA-based ver-
ification approach DYPOSUB. For the first time a dynamic
substitution order is used during backward rewriting which
allows to control the size of the intermediate polynomial. Our
approach allows to verify optimized and technology mapped
multipliers including industrial benchmarks which has not been
possible before.
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of integer multipliers by combining Gröbner basis with logic reduction,” in DATE, 2016,
pp. 1048–1053.

[7] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal verification of arithmetic
circuits by function extraction,” TCAD, vol. 35, no. 12, pp. 2131–2142, 2016.

[8] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of multipliers using com-
puter algebra,” in FMCAD, 2017, pp. 23–30.

[9] A. Mahzoon, D. Große, and R. Drechsler, “Combining symbolic computer algebra and
boolean satisfiability for automatic debugging and fixing of complex multipliers,” in
ISVLSI, 2018, pp. 351–356.

[10] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your polynomials before
backward rewriting to verify million-gate multipliers,” in ICCAD, 2018, pp. 129:1–129:8.

[11] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the algebraic approach for
verifying gate-level multipliers,” in DATE, 2018, pp. 1556–1561.

[12] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by combining SAT and
computer algebra,” in FMCAD, 2019, pp. 28–36.

[13] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA: Using reverse engineering to bring
light into backward rewriting for big and dirty multipliers,” in DAC, 2019, pp. 185:1–185:6.

[14] P. Pan and C.-C. Lin, “A new retiming-based technology mapping algorithm for lut-based
fpgas,” in FPGAs for Custom Computing Machines, 1998, pp. 35–42.

[15] D. A. Cox, J. Little, and D. O’Shea, Ideals Varieties and Algorithms. Springer, 1997.
[16] D. Kaufmann, A. Biere, and M. Kauers, “Incremental column-wise verification of arith-

metic circuits using computer algebra,” Formal Methods in Sys. Design, Feb. 2019.
[17] I. Koren, Computer Arithmetic Algorithms, 2nd ed. A. K. Peters, Ltd., 2001.
[18] R. Zimmermann, “Binary adder architectures for cell-based vlsi and their synthesis,” Ph.D.

dissertation, Swiss Federal Institute of Technology, 1997.
[19] “Abc: A system for sequential synthesis and verification,” available at https://people.eecs.

berkeley.edu/∼alanmi/abc/, 2018.
[20] “Arithmetic module generator based on acg,” available at https://www.ecsis.riec.tohoku.ac.

jp/topics/amg/i-amg, 2019.
[21] A. Mahzoon, D. Große, and R. Drechsler, “GenMul: Generating architecturally complex

multipliers to challenge formal verification tools,” in IWLS, 2019.
[22] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “The EPFL combinational benchmark

suite,” in IWLS, 2015.

https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/i-amg
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/i-amg

