
RevSCA: Using Reverse Engineering to Bring Light into
Backward Rewriting for Big and Dirty Multipliers

Alireza Mahzoon1 Daniel Große1,2 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, Germany 2DFKI GmbH, Bremen, Germany

{mahzoon,grosse,drechsle}@informatik.uni-bremen.de

ABSTRACT

In recent years, formal methods based on Symbolic Computer Alge-
bra (SCA) have shown very good results in verification of integer
multipliers. The success is based on removing redundant terms
(vanishing monomials) early which allows to avoid the explosion
in the number of monomials during backward rewriting. However,
the SCA approaches still suffer from two major problems: (1) high
dependence on the detection of Half Adders (HAs) realized as AND-
XOR gates in the multiplier netlist, and (2) extremely large search
space for finding the source of the vanishing monomials. As a con-
sequence, if the multiplier consists of dirty logic, i.e. for instance
using non-standard libraries or logic optimization, the existing SCA
methods are completely blind on the resulting polynomials, and
their techniques for effective division fail.

In this paper, we present RevSCA. RevSCA brings back light
into backward rewriting by identifying the atomic blocks of the
arithmetic circuits using dedicated reverse engineering techniques.
Our approach takes advantage of these atomic blocks to detect
all sources of vanishing monomials independent of the design ar-
chitecture. Furthermore, it cuts the local vanishing removal time
drastically due to limiting the search space to a small part of the
design only. Experimental results confirm the efficiency of our ap-
proach in verification of a wide variety of integer multipliers with
up to 1024 output bits.

1 INTRODUCTION

Multiplication is one of the most frequent and vital operations in
many digital applications. Particularly, in computational-intensive
applications such as signal processing and cryptography a large
part of the chip is dedicated to multiplier circuitry in order to
perform multiplication fast and efficient. Since the invention of
the first integer multiplier, the demands for fast and area-efficient
designs have encouraged designers to implement a wide variety of
multiplier architectures. Most of these architectures take advantage
of complex algorithms to shorten the critical path, to reduce the
number of the wires, or to minimize the number of building blocks.
As a consequence, rigorous verification is inevitable to ensure the
correctness of the multiplier.

While the utilization of large and non-trivial multipliers is be-
coming more popular in industry, formal verification techniques
for multipliers still suffer from many limitations: Decision Dia-

grams (such as BDDs and *BMDs), Boolean Satisfiability (SAT), and
Satisfiability Modulo Theories (SMT) are facing scalability issues
and cannot verify large designs; reverse engineering approaches
(e.g. [16]) only support architecturally simple multipliers; and term
rewriting techniques (e.g. [17]) are not fully automated.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317898

Recently, Symbolic Computer Algebra (SCA) approaches have
overcome many limitations of the just mentioned methods, see for
instance [5, 18, 19, 11, 12, 7]. The general idea of SCA-based veri-
fication is to (1) represent the function of the multiplier based on
its inputs and outputs as a Specification Polynomial SP , (2) capture
the logical gates of the circuit also as a set of polynomials PG , and
(3) take advantage of Gröbner basis theory in order to prove the
membership of SP in the ideal generated by PG . The just mentioned
3rd step consists of the step-wise division of SP by PG known as
backward rewriting, and eventually the evaluation of the result-
ing remainder. If this remainder is zero, the multiplier is correct;
otherwise, it is buggy.

The SCA-based verification techniques are scalable in proving
the correctness of trivial multipliers. In contrast, for non-trivial mul-
tipliers the number of monomials always explodes during backward
rewriting until recently – it has been shown that this explosion
is caused by redundant monomials, known as vanishing monomi-
als in literature [13, 14, 11]. Recently, in [8] a new theory for the
source of vanishing monomials has been introduced. The vanish-
ing monomials are formed when substituting a converging gate
during backward rewriting, i.e. a gate where both outputs of a Half
Adder (HA) converge. Based on these converging gates, [8] also
proposed a local backward rewriting step to make the global back-
ward rewriting vanishing-free. However, this solution still suffers
from two major problems: (1) High dependency on the detection of
HAs realized as AND-XOR pairs in the netlist, and (2) extremely
large search space for finding the source of vanshing monomials,
i.e. the converging gates. As a result, if the multiplier consists of
dirty logic, i.e. for instance using non-standard libraries or logic op-
timization, the SCA methods are completely blind on the resulting
polynomials, and their techniques for effective division fail.

Contribution: In this paper, we introduce RevSCA. RevSCA
brings back light into backward rewriting by identifying atomic

blocks of the multiplier, i.e. HAs, Full Adders (FAs) and Compressors

(CMs), using dedicated reverse engineering techniques. This allows
to resolve both problems, since based on the atomic blocks (a)
the local vanishing removal phase becomes robust against design
alterations, (b) more compact polynomials for the atomic blocks can
be created, and finally (c) the search space to find the converging
gates (and by this the sources of vanishing monomials) can be
reduced to a significantly smaller fraction of gates.

The paper is structured as follows: Section 2 reviews related
work and Section 3 provides the preliminaries. Then, in Section 4
we showcase the advantages of knowing the atomic blocks for SCA
verification. In Section 5 we introduce RevSCA. We describe in
detail how we perform reverse engineering on the AND-Inverter
Graph (AIG) representation of a multiplier which allows to detect all
sources of vanishing monomials independent of the design architec-
ture and hence make backward rewriting feasible. The experimental
results show that our proposed method can verify a large variety
of (dirty) integer multipliers with 1024 output bits while the other
state-of-the-art methods fail.1

1Our tool RevSCA and all benchmarks are available on GitHub; links can be found at
http://www.sca-verification.org/revsca

https://doi.org/10.1145/3316781.3317898
http://www.sca-verification.org/revsca

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA A. Mahzoon, D. Große, R. Drechsler

Z[0] Z[1] Z[2] Z[3]

n1

n8

n12

n11n9 n10

n5 n6 n7

n4n3n2

A[0] B[0] A[1]B[1]

c1

c2

Figure 1: 2×2 mult

PZ[3] := Z[3]− n11

PZ[2] := Z[2]− 1 + n12

Pn12 := n12− 1 + n9 + n10− n9n10

. . .

. . .

Pn3 := n3−A[1]B[0]

Pn2 := n2−A[0]B[1]

Pn1 := n1−A[0]B[0]

Figure 2: Node polynomials

SP := 8Z[3] + 4Z[2] + 2Z[1] + Z[0]−A×B

SP
pZ[3]−−−→ SP1 := 8n11 + 4Z[2] + 2Z[1] + Z[0]−A×B

SP1

pZ[2]−−−→ SP2 := 8n11 + 4− 4n12 + 2Z[1] + Z[0]−A×B

SP2
pn12−−−→ SP3 := 8n11 + 4n9 + 4n10− 4n9n10 + 2Z[1] + Z[0]−A×B

. . .

SP14
pn2−−→ SP15 := n1− (A[0]B[0])

SP15
pn1−−→ r := 0

Figure 3: Backward rewriting steps

2 RELATEDWORK

Several SCA-based verification methods have been proposed to ver-
ify integer multipliers. However, most of these methods only work
for trivial multipliers. The authors of [18] introduced step-wise
backward rewriting based on the reverse topological order of the
circuit. The technique proposed in [5] identifies fanout-free cones
before backward rewriting to reduce the total number of gener-
ated monomials. The method of [11] uses a column-wise rewriting
which cuts the circuit into slices and verifies them incrementally.
Techniques to identify HAs and FAs in the design, which can be
viewed as a simple form of reverse engineering, have been intro-
duced in [19, 12] in order to speed up the verification. Overall, all
these techniques are only applicable to multipliers where 2nd and
3rd stages are fully made of HAs and FAs.

The goal of some approaches is to alleviate the vanishing mono-
mials problem and make the verification of non-trivial multipliers
possible. The authors of [13] proposed the XOR rewriting tech-
nique to group gates into cones based on the XOR gates. Then, the
polynomials for the cones are extracted and vanishing monomials
are removed. But, this method is not robust and cannot remove all
vanishing monomials for many non-trivial multipliers.

[8] presented a theory for the origin of vanishing monomials
in non-trivial multipliers. It introduced a local vanishing removal
phase before (global) backward rewriting to remove the vanishing
monomials in converging cones starting from HAs. However, this
method is highly dependent on the detection of HAs realized as
AND-XOR pairs. Moreover, the search space for finding the source
of vanishing monomials on the netlist is extremely large.

3 PRELIMINARIES

In this section, first an overview of AIGs is given. Then, SCA verifi-
cation using AIGs is reviewed.

3.1 And-Inverter Graph

An AND-Inverter Graph (AIG) is a directed, acyclic graph that repre-
sents the functionality of a circuit using two-input AND nodes and
positive and negative edges. Since the operators {∧,¬} are func-
tionally complete, any Boolean function can be represented in an
AIG. Furthermore, the combinational logic of an arbitrary Boolean
network can be easily transformed into an AIG using DeMorgan’s
rule [9]. Fig. 1 shows the AIG of a 2 × 2 multiplier. Note that the
dashed lines show the negated edges (i.e. NOT operators).

AIGs are widely used in logic synthesis. In this context, cuts are
heavily used.

Definition 1. A cut of a node n is a set of nodes c , called leaves,
such that (i) every path from n to a primary input must visit at least

one node in c , and (ii) every node in c must be included in at least one

of these paths.

As an example, c1 = {n5,n6,n8} and c2 = {n7} are cuts for n8
and n7 nodes, respectively. The nodes n2 and n3 are the inputs to

both cuts. Cuts in an AIG can be computed using cut enumeration

techniques [10].

3.2 SCA-based Verification

Before explaining the verification process using SCA, we summarize
the important definitions and facts:
• A monomial M = xa11 xa22 . . . x

an
n is the power product of the

variables where ai ≥ 0
• A polynomial P = c1M1 + c2M2 + · · · + c jMj is a finite sum
of monomials with coefficients in field k
• A polynomial has a monomial order which is specified based
on the ordering of variables and their powers
• Assuming p is a polynomial and F is a set of polynomials,
the division of p by F is denoted by p F

−→ r where r is called
remainder

In SCA-based verification of multipliers, the goal is to formally
prove that the AIG representation (or gate-level netlist) and the
Specification Polynomial (SP) are equivalent. The SP is a polynomial
determining the function of a multiplier based on its inputs and
outputs. By knowing the inputs and outputs names as well as the
bit-width of the multiplier, it is easy to obtain the SP . For example,
the specification polynomial for the 2-bit multiplier of Fig. 1 is
SP = 8Z [3]+4Z [2]+2Z [1]+Z [0]−(2A[1]+A[0])(2B[1]+B[0])where
8Z [3]+4Z [2]+2Z [1]+Z [0] describes the word-level representation
of the 4-bit output, and (2A[1] +A[0])(2B[1] + B[0]) indicates the
multiplication of the 2-bit inputs.

The nodes of an AIG graph can be captured as polynomials
describing the relation between inputs and outputs. Based on the
edges, five basic operations might occur for an AIG node with
output z and inputs ni and nj .
z =ni ⇒ pN := z − ni , z = ni ∧ nj ⇒ pN := z − ninj ,
z =¬ni ⇒ pN := z − 1 + ni , z = ¬ni ∧ nj ⇒ pN := z − nj + ninj ,
z =¬ni ∧ ¬nj ⇒ pN := z − 1 + ni + nj − ninj (1)

Fig. 2 shows parts of the node polynomials of the 2× 2 multiplier.
Please note that all extracted polynomials are in the form PN =
x−tail(PN)where x is the node’s output, and tail(PN) is a function
based on the node’s inputs.

Assume that the AIG nodes are ordered based on the reverse-
topological order. The specification polynomial SP and the AIG are
equivalent (i.e. the AIG is bug-free), iff the remainder of dividing
SP by the ordered node polynomials is equal to zero. This theorem
is concluded from the theory of Gröbner basis (see [4, 11] for more
details).

The correctness of the 2× 2 multiplier is proven in Fig. 3 by step-
wise dividing SP by the node polynomials, which finally results in
the remainder zero. In integer multipliers, dividing SPi by a node
polynomial PNi = xi − tail(PNi) is equivalent to substituting xi
with tail(PNi) in SPi . For example, dividing SP2 by Pn12 in Fig. 3 is
equivalent to substituting n12 with tail(Pn12) = 1−n9−n10+n9n10
in SP2. The process of step-wise division (substitution) is known as
backward rewriting.

3.3 Vanishing Monomials

Vanishing monomials are redundant monomials which are gener-
ated in intermediate steps of backward rewriting and are reduced
to zero after potentially many steps. For non-trivial multipliers, the
large number of generated vanishing monomials before reduction
results in the explosion in the number of monomials, and conse-
quently failure of verification. In this context, several papers ex-
ploited the fact that the product of HA’s outputs is zero for rewriting
of the polynomials and by this to alleviate the vanishing monomial
problem. In [8] a theory for the source of vanishing monomials has
been introduced which is able to avoid the blow-up caused by the

RevSCA DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

vanishing monomials. The approach performs the following local
backward rewriting:

(1) Detecting HAs in the multiplier architecture
(2) Finding all the gates where outputs of HAs converge. These

gates are denoted as Converging Gates (CGs).
(3) Finding all cones starting from converging gates and ending

in the related HA outputs. These cones are called Converging
Gate Cones (CGCs).

(4) Extracting polynomials locally for CGCs, and removing van-
ishing monomials containing the product of HA outputs.

This local removal of vanishing monomials leads to a vanishing-free
global backward rewriting.

4 ATOMIC BLOCKS IN SCA

In this section, we showcase the advantages of knowing the atomic
blocks for SCA verification. Before this, we review the general
structure of an integer multiplier and define atomic blocks.

4.1 Multiplier Architectures and Atomic Blocks

Fig. 4 shows the three stages of an integer multiplier as well as
typical realizations for the stages on the right of the figure. The
three stages are: (1) Partial Product Generator (PPG) which generates
partial products fromMultiplier andMultiplicand, (2) Partial Product
Accumulator (PPA) which reduces the partial products by multi-
operand adders and computes their sum, and (3) Final Stage Adder
(FSA) which converts this sum to the corresponding binary output.
In the rest of the paper, we use the notation [α◦β◦γ] to refer to a
multiplier consisting of the stages: PPG α , PPA β , and FSA γ .

There are always some critical parameters in the design of mul-
tipliers such as area, delay, and power as well as technology con-
straints. These parameters play a major role in determining (i)
which architecture is suitable for a specific stage and (ii) which
realization for an atomic block can be chosen, see e.g. [20, 6, 3].

In the following we define how multiplier stages are realized
using so called atomic blocks.

Definition 2. An atomic block is a basic building block for a

multiplier which gets n binary inputs with same bit positions, and

computes their sum asm binary outputs. The typical atomic blocks

with 2, 3, and 5 inputs are HA, FA, and CM. The corresponding word-

level relations are:

HA(in : X , Y out : C, S) ⇒ 2C + S = X + Y (2)
FA(in : X , Y , Z out : C, S) ⇒ 2C + S = X + Y + Z

CM (in : X , Y , Z ,W , Q out : Co, C, S) ⇒ 2Co + 2C + S = X + Y + Z +W +Q

Please note that this definition does not require a specific realiza-
tion of an atomic block. In fact, only the respective mathematical
relation is defined (HA, FA, CM).

Definition 3. A specific multiplier architecture consisting of

the stages [α◦β◦γ] (cf. Fig. 4) is implemented by using atomic blocks

and/or extra logic per stage. For trivial multipliers the PPA stage β
and the FSA stage γ are only made of HA and FA atomic blocks. For

non-trivial multipliers all kinds of atomic blocks plus highly parallel

extra logic combining these blocks are allowed for all stages [6].
In the next section we show how knowing the atomic blocks of

multipliers helps for SCA-based verification.

4.2 Advantages of Atomic Blocks for SCA

Knowing atomic blocks in SCA-based verification of multipliers
points up three major benefits.

4.2.1 Reveal All Vanishing Monomials. The authors of [8] have
shown that detecting and removing all vanishing monomials before
backward rewriting is the key factor for successful verification of
non-trivial multipliers. However, the main disadvantage of this

Partial Product Generator
(PPG)

Partial Product Accumulator
(PPA)

Final Stage Adder
(FSA)

Multiplier Multiplicand

Product

SP: Simple PPG
BP: Booth PPG

AR: Array
CT: Compressor Tree

WT: Wallace Tree

DT: Dadda Tree

RC: Ripple Carry
BK: Brent-Kung

CL: Carry Look-ahead
LF: Lander-Fischer

Figure 4: Mult arch.

480

354

490

554

404

282

322

380

0

268

70
50

18

238

80 68

0

100

200

300

400

500

600
Lib 1

Lib 2

Figure 5: AND-XOR numbers

SP◦
AR◦

RC

SP◦
CT◦

BK

SP◦
DT◦

LF

SP◦
W

T◦
CL

BP◦
AR◦

RC

BP◦
CT◦

BK

BP◦
DT◦

LF

BP◦
W

T◦
CL

0%

20%

40%

60%

80%

100%
Atomic Blocks Logic

(a) Multiplier types

AR CT DT WT RC BK LF CL
0%

20%

40%

60%

80%

100%
Atomic Blocks Logic

PPA FSA

(b) Stage architectures

Figure 6: Atomic blocks ratio in 64×64 multipliers

method is the trivial HA detection as it just looks for AND-XOR
pairs (i.e. standard textbook HAs) in the design. Hence, this method
only works for "clean" multipliers where all AND-XOR pairs are
explicitly visible in the multiplier netlist. Please note that so far all
other recent SCA approaches (see e.g. [18, 13, 11]) only considered
HAs in the form of AND-XOR pairs. Obviously, an AND-XOR based
HA agrees with our atomic block definition, but it is only a special
case since there are many different realizations [6]. To demonstrate
the consequence, we conducted an experiment where we varied
the HA realization. Fig. 5 shows the number of detected AND-XOR
pairs for several architectures of 16x16 bit multipliers using two
different HA/FA synthesis libraries. In case of the first synthesis
library2 (Lib 1 in Fig. 5), all AND-XOR pairs are explicitly visible and
the SCA-based method from [8] was able to verify all multipliers.
However, when the second library3 (Lib 2 in Fig. 5) is used, most of
the AND-XOR pairs disappear; an extreme case is the SP◦AR◦RC-
multiplier where no AND-XOR pair remains. As a consequence,
SCA-verif. fails due to vanishing monomial explosion.

Already, this experiment clearly shows that techniques are needed
to make SCA verification more robust. We will show that our ap-
proach RevSCA is able to detect the atomic blocks independent of
their realization using reverse engineering and hence backward
rewriting becomes feasible.

4.2.2 Limit the Search Space for Vanishing Removal. In [8] the
search space for finding converging gates is the entire netlist. The
method first find all HAs, then traverses all paths from the HAs out-
puts to find possible converging gates. Nevertheless, this technique
ignores the fact that (1) a large part of a multiplier is just made of
atomic blocks, and (2) only a small part which can not be identified
as atomic blocks, i.e. the extra logic, is responsible for generating
vanishing monomials.

Fig. 6a shows the ratio of logic of atomic blocks to the entire
logic in different multiplier architectures4. Despite the fact that this
ratio slightly changes with respect to the design architecture, in
average atomic blocks constitute 70% of a multiplier. In addition,
Fig. 6b demonstrates the atomic blocks ratio for different PPA and
2HA realization as AND/XOR, and FA as two HAs and OR.
3Due to technology constraints in Lib 2 the HA realization is done without an XOR,
and the FA realization with a multiplexer for faster carry computation.
4For this bar graph we have run the reverse engineering techniques of RevSCA.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA A. Mahzoon, D. Große, R. Drechsler

Algorithm 1 RevSCA
Input: Multiplier AIGG , Specification polynomial SP
Output: TRUE if the circuit is correct, and FALSE otherwise
1: AB ← ReverseEngineering (G) ▷ AB is the set of atomic blocks
2: CN ← FindCones (G, AB) ▷ CN is the set of converging gate cones and fanout-free cones
3: F ← ExtractVanishingFreePolys (CN) ▷ F is the set of cone polynomials
4: r ← GlobalBackwardRewriting (SP , F , AB) ▷ r is the remainder
5: if r == 0 then
6: return TRU E
7: else

8: return FALSE

FSA architectures. Based on these results, we can conclude that the
PPA stage of many non-trivial multipliers is completely made of
atomic blocks. On the other hand, the FSA stage of the multipliers
is a mixture of atomic blocks and extra logic and their ratio varies
based on the architecture.

Overall, we will show that the reverse engineering techniques of
RevSCA allow to limit the search space for finding the converging
gates to the extra logic in the FSA. This drastically reduces the
search time in the local vanishing removal phase.

4.2.3 Make Global Backward Rewriting Efficient. There is always
a compact algebraic relation between inputs and outputs of an
atomic block independent of the realization at the gate-level.

With respect to the fact that a large part of a design is constructed
with atomic blocks (see Fig. 6a), detecting atomic blocks as done by
RevSCA will speed up the global backward rewriting considerably.

5 REVSCA

In this section, we first give a top-level overview of our approach
RevSCA. Then, we explain the three phases of RevSCA in detail.

5.1 Top-Level Algorithm

In order to overcome the obstacles of SCA-based verification tech-
niques in proving the correctness of large and dirty multipliers, we
introduce RevSCA. Algorithm 1 shows the pseudo-code of RevSCA
consisting of three main phases: Reverse Engineering, Local Van-
ishing Removal, and Global Backward Rewriting. In the first phase,
the atomic blocks are identified using a dedicated reverse engineer-
ing technique (see Line 1). Then, by knowing all atomic blocks in
the multiplier, the converging gate cones, which are the source
of vanishing monomials, are detected (Line 2). Consequently, the
polynomial for each cone is obtained and vanishing monomials
containing the product of HA outputs are removed (Line 3). Finally,
the global backward rewriting is performed to substitute cone and
atomic block polynomials in SP (Line 4). If the remainder is zero,
the circuit is bug-free; otherwise, it is buggy (Line 5 – Line 8).

5.2 Reverse Engineering

In this section, we propose our dedicated reverse engineeringmethod
to identify atomic blocks in multipliers.

5.2.1 Atomic Blocks Specification Library. Before we can search
on the design for atomic blocks, we have to specify themathematical
functions of the atomic blocks and collect them in a library. Since
the atomic block functions depend only on a small number of inputs,
we can make use of truth tables. Lets consider the example for the
HA atomic block. The truth table of the HA outputs sum and carry
can be seen in Fig. 7. We store the two output vectorsTS = 0110 and
TC = 1000 as the basic truth table for the HA. Since we represent
the circuit netlist as an AIG we are interested in all variants of
truth tables for an atomic block, i.e. we allow the negation for each
input and output, respectively. For example, the truth table of the
HA after negating the first input is T 1

S = 1001, and T 1
C = 0010 (see

dashed area in Fig. 7). If n is the number of input bits and m is
the number of output bits, in total 2m+n sets of truth tables are

X Y S C S C

1 1 0 1 1 0

1 0 1 0 0 0

0 1 1 0 0 1

0 0 0 0 1 0

𝑇𝑆 𝑇𝐶 𝑇𝑆1 𝑇𝐶1

Figure 7: HA truth table

X Y Z W Q S C Co

1 1 1 1 1 1 1 1

1 1 1 1 0 0 1 1

1 1 1 0 1 0 1 1

1 1 1 0 0 1 1 0

1 1 0 1 1 0 1 1

1 1 0 1 0 1 1 0

1 1 0 0 1 1 1 0

1 1 0 0 0 0 1 0...
0 0 1 1 1 1 1 0

0 0 1 1 0 0 1 0

0 0 1 0 1 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 1 0

0 0 0 1 0 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

𝑇𝐶 = 11111111…11101000𝑇𝑆 = 10010110…10010110
𝑇𝐶𝑜 = 11101000…00000000

𝑇𝐶 = 111𝑋31𝑋5𝑋6𝑋7…𝑋24𝑋25𝑋260𝑋28000𝑇𝑆 = 10010110…10010110
𝑇𝐶𝑜 = 111𝑋31𝑋5𝑋6𝑋7…𝑋24𝑋25𝑋260𝑋28000

Figure 8: CM truth table

obtained after considering all possible combinations of negations
for input and output bits. Following this principle, the complete set
of truth tables of HAs and FAs can be obtained easily.

However, for the compressor CM, the story is different. The
challenge originates from the fact that there are outputs with the
same bit position (significance). For example this holds for the CM
with outputs S , C , Co where C and Co have the same bit position.
As a result, the value of these two outputs can be swapped for a
certain input combination without changing the function of the CM.
However, this would lead to the generation of a very big number of
truth tables. We illustrate this by a concrete example: Fig. 8 shows
the basic truth table (without any negations) of a CM and omitting
some lines in the middle. As mentioned above, the i−th value of the
vectors TC and TCo can be swapped. It means that if these values
are not equal (red cells in Fig. 8), swapping them leads to generation
of a completely new truth table. As in total there are 20 non-equal
values of C and Co in the truth table, 220 = 1, 048, 576 new truth
tables can be generated by swapping these values. To avoid dealing
with millions of truth tables, we use arbitrary values Xi in TC , and
its complement Xi in TCo where the i-th value of TC and TCo is
different. For example in Fig. 8, TC and TCo can be encoded as:

TC =111X31X5X6X7 . . .X24X25X260X28000 (3)

TCo =111X31X5X6X7 . . .X24X25X260X28000

The encoded values of TC and TCo in (3) cover all 220 possible
truth tables. Finally, all the obtained truth tables of atomic blocks
are stored in the Atomic Blocks Library (ABLib).

5.2.2 Identifying Atomic Blocks in Multipliers. After creating
ABLib, the next step is to identify atomic blocks in the multiplier.
Algorithm 2 presents the general algorithm for identifying atomic
blocks with n inputs andm outputs using ABLib. The input of the
algorithm is the AIG G for a multiplier, the set of possible vectors
for each output ST0, . . . , STm from one concrete atomic block of
ABLib, and the respective number of input bits n. The algorithm
returns the list of found atomic blocks AB as output. First, all n-
input cuts (cf. Definition 1) are computed on the AIG and stored in
C (see Line 1). Then, the truth tables of the cuts are checked to see
whether there is a cut ci whose truth table is the member of one of
the output vector sets STj . If yes, i.e. that the function of ci is the
same as the j-th output of the atomic block, and it is added to the
list of possible candidates PCj (Line 2 – Line 5). Subsequently, the
possible candidates are scanned to find the set of cuts with the same
inputs (Line 6). Finally, the cuts with the same inputs are merged
since we have found an atomic block (Line 7).

We give an example: Consider the 2 × 2 multiplier of Fig. 1:
c1 = {n5,n6,n8} and c2 = {n7} are among the extracted 2-input
cuts. By computing the truth tables of these two cuts, the algorithm
determines that Tc1 and Tc2 are members of STS and STC which
are the set of possible vectors for sum and carry in ABLib, respec-
tively. Moreover, c1 and c2 have exactly the same inputs n2 and n3.
Therefore, merging these two cuts results in identifying the atomic
block B = {n5,n6,n8,n7} which is a HA.

RevSCA DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

Algorithm 2 Atomic blocks identification
Input: Mul AIGG , Set of output vectors ST1, . . . , STm from ABLib, Atomic block inputs n
Output: List of identified atomic blocks AB
1: C ← FindCuts (G, n) ▷ Finding all n-input cuts
2: for ci ∈ C do

3: for STj ∈ ST do

4: if TruthTable(ci) ∈ STj then
5: PCj = PCj ∪ ci
6: SC ← Find the cuts with the same inputs in PC0, PC1, . . . , PCm
7: AB ←Merge the cuts with the same inputs in SC
8: return AB

The run-time for computing cuts depends on the number of in-
puts for a cut, here n. In order to extract all atomic blocks efficiently,
we first run Algorithm 2 for 2-input and 3-input cuts to detect all
HAs and FAs. If the number of FAs is less than 20%5 of the entire
atomic blocks, then it can be concluded that the multiplier archi-
tecture has been implemented using larger atomic blocks, i.e. CM.
Hence, we run the algorithm for 5-input cuts to detect the CMs.

5.3 Local Vanishing Removal

After the reverse engineering phase, all atomic blocks including
HAs are identified in the multiplier. In order to ensure the cancella-
tion of vanishing monomials, first all CGCs in the extra nodes are
detected. As most of the circuit has now been classified as atomic
blocks, the search space to find CGCs reduces to a small part of the
multiplier. Then, the polynomial for each CGC is extracted by sub-
stitution of the node polynomials in the cone. The CGC polynomial
determines the output of the cone based on its inputs. As vanish-
ing monomials contain the product of HA’s outputs, and these
outputs are the inputs of CGCs, removing vanishing monomials
from the cone polynomials locally leads to a set of vanishing-free
polynomials.

Fig. 9 shows a 4 × 4 non-trivial multiplier (SP◦WT◦BK architec-
ture). The first stage of the multiplier has been removed due to page
limitation.Hn and Fm are the identifiedHAs and FAs, anda,b, . . . ,h
are the nodes of the extra logic in the AIG of the multiplier. Assum-
ingA and B are two 4-bit inputs, the generated partial product from
A[i] and B[j] is denoted by pi j . The outputs ofH6 converge to d and
e , so the corresponding CGCs are y1 = {d,b} and y2 = {e,d, c,a}.
The outputs of H5 converge to e , consequently y3 = {e,d,b, c,a}
is the only CGC for H5. As e is a common converging gate for H5
andH6, we can merge y2 and y3 to obtain y′ = {e,d,b, c,a}. On the
other hand, y1 is a subset of y′. Therefore, y′ represents the only
CGC in the multiplier. To extract the polynomial of y′ and remove
vanishing monomials, we start from the polynomial of the node
located on the output of the cone i.e. pe = d − cd , and continue
substituting node polynomials until we reach the input of the cone.
Finally, the monomials containing the product ofH5 andH6 outputs
(CH5SH5 and CH6SH6) are removed from the cone polynomial to
obtain a vanishing-free polynomial. The rest of the nodes in the
AIG graph, which are not part of any CGC, are grouped based on
the fanout-free regions. For example v = {h, f ,д} is a fanout-free
cone in Fig. 9.

5.4 Global Backward Rewriting

The final phase of verification is substituting the cone and atomic
block polynomials in the specification polynomial. The relation of
inputs and outputs for the atomic blocks (atomic block polynomials)
can be obtained from Definition 2.

Assume that SPi = 2nC +nS +
∑
k Mk is the current polynomial

during backward rewriting whereC and S are the outputs of a FA, n
is a coefficient, and

∑
k Mk are the rest of the monomials. Based on

(2), if X , Y , and Z are the inputs of the FA, the current polynomial
after substitution will be SPi+1 = nX + nY + nZ +

∑
k Mk . The

polynomial substitution for HAs and CMs is similar to FAs. Since
5We justified this number by several experiments.

F1H1 F2 H2

H3 F3 F4 F5

H4 H5 H6

F6

F7

a b

c d

e
f g

h

out[0] out[1] out[2] out[3] out[4] out[5] out[6] out[7]

p00 p10 p01 p11 p20 p02 p03 p12 p21p30 p13 p22 p31 p32 p23 p33

CS CS

Figure 9: 4×4 non-trivial mult after reverse engineering

more compact polynomials for atomic blocks can be inserted, the
global backward rewriting after atomic block identification using
reverse engineering is faster and more efficient.

6 EXPERIMENTAL RESULTS

RevSCA has been implemented in C++. In order to extract cuts
in the AIG for the reverse engineering phase, we used the mock-
turtle library [15]. The experiments have been carried out on an
Intel(R) Xeon(R) CPU E3-1270 v3 3.50 GHz with 32 GByte of main
memory. The efficiency of our proposed method is evaluated using
a wide variety of trivial and non-trivial multiplier architectures.
The multipliers with 16 × 16, 32 × 32, and 64 × 64 sizes have been
generated with the AOKI generator [2]. This generator can build
multiplier architectures only up to 64 bits per input. Therefore,
we have generated multipliers up to 512 input bits using our own
multiplier generator6. In addition, for the bigger multipliers, we
used the same HA/FA synthesis library Lib 2 as in Section 4.2.1. All
benchmarks have been converted to AIG using ABC [1].

In Table 1, we report the results of verifying different multiplier
architectures. Please note that the Time-Out (TO) has been set to
150 hours. The first column of Table 1 presents the architecture
of the multiplier based on its stages (see abbreviations below the
table). The second column Size shows the size of the multiplier
based on the input bits.

The verification data of our proposed method RevSCA is re-
ported in the third column Verification data, which consists of five
subcolumns: Gates shows the number of gates in the multiplier.
Atomic blocks reports the number of identified atomic blocks af-
ter reverse engineering. Cones refers to the number of extracted
vanishing-free and fanout-free cones. Vanishing monomials reports
the total number of the removed vanishing monomials in the local
vanishing removal phase.Max poly size shows the maximum size of
the current polynomial SPi during backward rewriting by counting
the number of monomials.

Multipliers with 512 bit per input consist of more than 2 million
gates. In these multipliers more than 38 million vanishing mono-
mials have to be removed before backward rewriting to avoid the
explosion in the number of monomials. The maximum polynomial
sizes in Max Poly Size column indicates that RevSCA successfully
avoid the blow up in the number of monomials by atomic block
identification and removing all vanishing monomials.

The forth column of Table 1 reports the overall run-time of
our proposed verification method which is the sum of consumed
time for reverse engineering, local vanishing removal, and global
backward writing. As can be seen, our approach can verify all
multipliers with different architectures and sizes. Please note that
the reverse engineering phase only constitutes 12% of the entire

6Our multiplier generator is available at http://www.sca-verification.org/genmul

http://www.sca-verification.org/genmul

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA A. Mahzoon, D. Große, R. Drechsler

Table 1: Results of verifying different multiplier architectures

Benchmark Size
Verification data Run-times (seconds)

Atomic Vanishing Max Poly
Gates Blocks Cones Monomials Size RevSCA Commercial [8] [13] [19] [11]

SP◦BD◦KS 16×16 2,101 281 311 2,756 512 0.93 50.00 TO TO TO TO
BP◦WT ◦CS 1,821 195 388 56 823 0.49 47.00 TO TO TO TO
SP◦DT ◦LF

32×32

8,046 997 1,142 9,705 1,532 2.59 TO 6.37 64.62 TO TO
SP◦WT ◦CL 12,066 1,114 1,141 27,612 1,822 5.70 TO 13.58 1,045.89 TO TO
SP◦BD◦KS 8,577 1,109 1,141 23,972 1,864 11.69 TO TO TO TO TO
SP◦AR◦CK 7,780 1,020 1,100 0 2,402 4.72 TO TO TO TO TO
BP◦AR◦RC 6,314 719 1,209 0 2,604 3.89 TO 4.21 51.19 0.02 TO
BP◦CT ◦BK 5,766 652 1,261 946 3,621 9.06 TO 3.11 227.41 TO TO
BP◦OS◦CU 7,357 673 1,454 0 3,449 6.88 TO TO TO TO TO
BP◦WT ◦CS 6,640 706 1,277 56 3,383 5.14 TO TO TO TO TO
SP◦DT ◦LF

64×64

32,680 4,038 4,341 76,515 6,058 31.10 TO 97.57 2,105.74 TO TO
SP◦WT ◦CL 52,083 4,365 4,340 266,684 6,930 96.27 TO 224.43 TO TO TO
SP◦BD◦KS 34,065 4,313 4,339 203,236 6,566 162.26 TO TO TO TO TO
SP◦AR◦CK 31,944 4,091 4,246 0 18,028 142.51 TO TO TO TO TO
BP◦AR◦RC 24,442 2,727 4,457 0 9,990 53.33 TO 56.80 882.52 0.09 TO
BP◦CT ◦BK 21,872 2,413 4,589 3,586 15,890 119.15 TO 38.19 1,729.33 TO TO
BP◦OS◦CU 26,821 2,509 5,077 80 13,434 94.91 TO TO TO TO TO
BP◦WT ◦CS 24,830 2,548 4,584 0 13,176 74.88 TO TO TO TO TO
SP◦AR◦RC

128×128
129,535 16,256 16,639 0 16,640 348.60 TO TO TO 1.10 TO

SP◦WT ◦BK 131,683 17,366 16,767 13,504 48,060 745.47 TO TO TO TO TO
SP◦DT ◦LF 131,297 16,263 16,884 606,301 23,971 489.98 TO TO TO TO TO
SP◦AR◦RC

256×256
521,215 65,280 66,047 0 66,048 8,719.54 TO TO TO Failed TO

SP◦WT ◦BK 526,520 67,974 66,304 52,217 430,112 21,454.30 TO TO TO TO TO
SP◦DT ◦LF 525,531 65,288 66,547 4,823,639 96,654 12,873.65 TO TO TO TO TO
SP◦AR◦RC

512×512
2,091,007 261,632 263,167 0 263,168 192,640.30 TO TO TO Failed TO

SP◦WT ◦BK 2,103,610 265,711 263,681 310,455 1,933,497 492,320.37 TO TO TO TO TO
SP◦DT ◦LF 2,101,205 261,641 264,178 38,472,785 384,930 240,051.08 TO TO TO TO TO

Stage 1 ⇒ SP: Simple partial product generator BP: Booth partial product generator TO: Time-Out (150 hrs) Failed: Internal error
Stage 2 ⇒ AR: Array BD: Balanced delay tree DT: Dadda tree WT: Wallace tree CT: Compressor tree OS: Overturned-stairs tree
Stage 3 ⇒ RC: Ripple carry BK: Brent-Kung LF: Lander-Fischer CL: Carry look-ahead KS: Kogge-Stone CK: Carry-skip CS: Carry select CU: Conditional sum

run-time on average. On the other hand, global backward rewriting
took up most of the run-time, i.e. 73% on average.

The run-times of the state-of-the-art verification methods are
shown in the fifth column. This column consists of five subcolumns:
While the first subcolumn Commercial reports the run-times of the
commercial verification tool Onespin, the remaining subcolumns
give the run-times of some of the most recent SCA verification
techniques. The commercial tool only verifies 16 × 16 multipliers.
The verification methods of [8] and [13] can verify some of the
non-trivial multipliers due to the vanishing removal techniques.
However, these methods are highly dependent on detection of AND-
XOR pairs in the design. Therefore, for the benchmarks where AND-
XOR pairs are not explicitly visible, their methods are blind and time
out in verification. The proposed method of [19] can verify trivial
multipliers (i.e. BP◦AR◦RC and SP◦AR◦RC) very fast. However, it
fails to prove the correctness of non-trivial multipliers. Finally, the
work of [11] fails in verification of all benchmarks.

7 CONCLUSION

In this paper, we have proposed a fast and robust SCA-based verifi-
cation method integrating dedicated reverse engineering to verify
big and dirty multipliers. The approach takes advantage of atomic
block identification to overcome several obstacles when verifying
non-trivial multipliers. The experimental results showed that our
method allows for verification of a wide variety of multiplier archi-
tecture with up to 1024 output bits and more than 2 million gates
while the other state-of-the-art approaches fail.
Acknowledgements: This work was supported by the University
of Bremen’s graduate school SyDe funded by the German Excellence
Initiative, and by the German Academic Exchange Service (DAAD).

REFERENCES

[1] Abc: A system for sequential synthesis and verification. available at https://people.
eecs.berkeley.edu/~alanmi/abc/, 2018.

[2] Arithmetic module generator based on acg. available at https://www.ecsis.riec.
tohoku.ac.jp/topics/amg/i-amg, 2019.

[3] M. Bahadori, M. Kamal, A. Afzali-Kusha, and M. Pedram. High-speed and energy-
efficient carry skip adder operating under a wide range of supply voltage levels.
TVLSI, 24(2):421–433, Feb. 2016.

[4] D. A. Cox, J. Little, and D. O’Shea. Ideals Varieties and Algorithms. Springer, 1997.
[5] F. Farahmandi and B. Alizadeh. Gröbner basis based formal verification of large

arithmetic circuits using gaussian elimination and cone-based polynomial extrac-
tion. MICPRO, 39(2):83–96, 2015.

[6] I. Koren. Computer Arithmetic Algorithms. A. K. Peters, Ltd., 2nd edition, 2001.
[7] A. Mahzoon, D. Große, and R. Drechsler. Combining symbolic computer alge-

bra and boolean satisfiability for automatic debugging and fixing of complex
multipliers. In ISVLSI, pages 351–356, 2018.

[8] A. Mahzoon, D. Große, and R. Drechsler. PolyCleaner: clean your polynomials
before backward rewriting to verify million-gate multipliers. In ICCAD, pages
129:1–129:8, 2018.

[9] A. Mishchenko, S. Chatterjee, and R. K. Brayton. Dag-aware aig rewriting a fresh
look at combinational logic synthesis. In DAC, pages 532–535, 2006.

[10] P. Pan and C.-C. Lin. A new retiming-based technology mapping algorithm for
lut-based fpgas. In FPGAs for Custom Computing Machines, pages 35–42, 1998.

[11] D. Ritirc, A. Biere, and M. Kauers. Column-wise verification of multipliers using
computer algebra. In FMCAD, pages 23–30, 2017.

[12] D. Ritirc, A. Biere, andM. Kauers. Improving and extending the algebraic approach
for verifying gate-level multipliers. In DATE, pages 1556–1561, 2018.

[13] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler. Formal verifi-
cation of integer multipliers by combining Gröbner basis with logic reduction. In
DATE, pages 1048–1053, 2016.

[14] A. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler. Equivalence checking
using Gröbner bases. In FMCAD, pages 169–176, 2016.

[15] M. Soeken, H. Riener, W. Haaswijk, and G. D. Micheli. The EPFL logic synthesis
libraries, May 2018. arXiv:1805.05121.

[16] D. Stoffel and W. Kunz. Equivalence checking of arithmetic circuits on the arith-
metic bit level. TCAD, 23(5):586–597, 2004.

[17] S. Vasudevan, V. Viswanath, R. W. Sumners, and J. A. Abraham. Automatic
verification of arithmetic circuits in RTL using stepwise refinement of term
rewriting systems. TC, 56(10):1401–1414, 2007.

[18] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski. Formal verification of
arithmetic circuits by function extraction. TCAD, 35(12):2131–2142, 2016.

[19] C. Yu, M. Ciesielski, and A. Mishchenko. Fast algebraic rewriting based on and-
inverter graphs. TCAD, 37(9):1907–1911, 2017.

[20] R. Zimmermann. Binary Adder Architectures for Cell-Based VLSI and their Synthesis.
PhD thesis, Swiss Federal Institute of Technology, 1997.

https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/i-amg
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/i-amg

